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Abstract

In multi-view human body capture systems, the recov-
ered 3D geometry or even the acquired imagery data can
be heavily corrupted due to occlusions, noise, limited field-
of-view, etc. Direct estimation of 3D pose, body shape
or motion on these low-quality data has been tradition-
ally challenging.In this paper, we present a graph-based
non-rigid shape registration framework that can simulta-
neously recover 3D human body geometry and estimate
pose/motion at high fidelity.Our approach first generates
a global full-body template by registering all poses in the
acquired motion sequence.We then construct a deformable
graph by utilizing the rigid components in the global tem-
plate.We directly warp the global template graph back to
each motion frame in order to fill in missing geometry.
Specifically,we combine local rigidity and temporal coher-
ence constraints to maintain geometry and motion consis-
tencies.Comprehensive experiments on various scenes show
that our method is accurate and robust even in the presence
of drastic motions.

1. Introduction

Despite tremendous efforts and advances in 3D shape
and motion reconstruction [8, 38, 43, 39, 32, 2, 49, 46],
reliable estimation of 3D pose, body geometry and motion
trajectory remains challenging. 3D reconstruction produced
by traditional photogrammetry or multi-view geometry can
be heavily corrupted due to occlusions, noise, limited field-
of-view, etc. It is possible to add additional cameras to
improve the reconstruction but would lead to higher com-
putational and equipment cost. One possible solution is
to complete the missing data via geometric operators such
as filtering and hole filling (e.g., Poisson surface comple-
tion) [20, 19, 26]. By far these methods can only handle
small holes. It is also possible to adopt a template-based
approach [22, 50, 15] by using pre-reconstructed full body

3D geometry. In reality, generating the template requires
special acquisition system that is inaccessible to commodity
users. Further, such techniques cannot handle strong defor-
mations caused by drastic motion.

In this paper, we present a graph-based non-rigid shape
registration framework that can simultaneously recover 3D
human body geometry and estimate motion at high fidelity.
Our approach first generates a global full-body template by
registering all poses in the acquired motion sequence. We
observe that missing body geometry in one frame may ap-
pear in other frames in the motion sequence. This implies
that we can generate the complete body template by align-
ing each individual partial reconstruction. To do so, we con-
duct multi-frame correspondence matching by imposing a
temporal coherence constraint. We consider both forward
and backward motions to formulate the temporal regular-
ization. We then construct a deformable graph by utiliz-
ing the rigid components in the global template. Although
the human body is non-rigidity, it can be effectively decom-
posed into piece-wise rigid components. We hence segment
the global template into connected rigid patches and build
a deformable graph with centroid of rigid patches as nodes.
Finally, we develop a patch surface expansion approach for
fitting the global template in terms of each node’s motion
estimation. We also impose temporal consistency to main-
tain local rigidity and motion smoothness. The reconstruc-
tion pipeline of our algorithm is shown in Fig. 1. Compre-
hensive experiments on a multi-view system show that our
method is accurate and robust even in the presence of dras-
tic motions.

2. Related Work
There is an emerging trend on using multi-view acqui-

sition techniques for reconstructing 3D human body geom-
etry and motion. Notable examples include techniques us-
ing a multi-view camera system [32, 1, 29, 28],shape-from-
silhouette [14, 5], multiple-view stereo matching [37], and
photometric stereo [43, 8]. The focus has been on conduct-
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Figure 1. A diagram showing the pipeline of our reconstruction algorithm.

ing non-rigid registration [18, 23] for mesh sequence track-
ing and 3D reconstruction from the captured data. Most
previous work falls into two categories, i.e. template-free
shape alignment approach and template-based deformation
approach.

Template-free shape alignment. This class of methods
performs per-frame reconstruction without using a global
full body template. Süssmuth et al. [41] map all input scans
onto a 4D space-time volume and conduct high-dimensional
shape reconstruction. Mitra et al. [27] also use a 4D space-
time representation to compute the motion of the scanned
object. They recover the volume by estimating globally
consistent motion instead of pairwise alignment. Wand et
al. [45] applied a statistic framework to conduct pairwise
shape alignment if the topology remains consistent. They
further improves the template-free shape alignment by us-
ing volumetric deformation model [44]. However, the com-
putational complexity is very high and the performance is
limited by the running time. The algorithm is also sensi-
tive to corrupted input data such as large shape deformation
and/or truncated geometry. To summarize, above template-
free approaches can only handle small motion due to the
accumulation of tracking errors.

Template-based approaches. This class of methods at-
tempts to utilize geometric template as a shape prior for
mesh sequences tracking. Some focus on tracking and
reconstructing the model to accommodate general scenar-
ios. Offline approaches such as [22] acquire a coarse low-
resolution template via static acquisition and then track the
input sequence using embedded deformation [40]. Dou et
al. [10] use an eight-depth camera system to reconstruct
the full body geometry and track the motion by deform-
ing a pre-captured human body template. Zollhöfer et al.
[50] perform online template acquisition for mesh tracking
and use GPU acceleration to achieve real-time performance.
However, acquiring the online template requires the motion
to be rigid and is prone to errors in case of drastic motions.
Newcombe et al. [30] extended the Kinect fusion algorithm
[31] to perform template-based reconstruction. Their ap-
proach is able to capture the non-rigid partial views of a
moving person. However, their system can only handle rel-
atively slow motion. Guo et al. [15] use L0 based regular-
izer to achieve more accurate and robust result. More re-

cent approaches [7, 33, 17, 2] adopt a keyframe-based mesh
tracking and similarity tree scheme and are able to handle
topology changes and significantly reduce the tracking fail-
ure rate.

Other non-rigid tracking approaches tackle elastic ob-
jects and are suitable for emulating Cartoon style avatars.
Vlasic et al. [42] apply shape-from-silhouette and deformed
a statically acquisition template via linearly blended skin-
ning [21]. Huang et al. [16] use a skeleton-based hybrid
deformation approach. Rhodin et al. [35] and Robertini
et al. [36] present pleasant results on outdoor motion cap-
ture, however, their methods are based on articulated skele-
ton thus can’t applied to general shape. Cargniart et al.
[3] propose a patch-based approach. [47] and [1] explore
fitting 3D body model database onto the acquired data.
Similar methods have been also applied to face and hand
tracking [25, 4, 34]. Another seminal work of Holoporta-
tion by Dou et al. [11] achieves real-time performance cap-
ture,however, their results are sensitive to background seg-
mentation errors.

Our approach falls into the category of template-based
approach. However, different from [50, 22], we do not
require a separate process for building the template. In-
stead, we construct our global template by accumulating
individual frames during the capture process. Our system
uses a multi-view stereo capture system for data acquisi-
tion. However, our input data is corrupted due to viewing
frustum truncation and drastic motion. Direct reconstruc-
tion from multi-view stereo approach exhibits large holes
and even truncations. In our approach, we propose to ex-
ploit the temporal redundancies to solve this problem.

3. 3D Human Shape/Motion Reconstruction
Our algorithm consists of four major steps. We first build

a global human body template from a motion sequence with
incomplete body geometry. In order to achieve this, we
establish pairwise correspondences between adjacent mo-
tion frames by imposing a temporal regularization term.
By minimizing our global deformation energy function, we
align the incomplete poses from all frame to a global tem-
plate. Next, we use the graph-cut algorithm to segment the
global template into multiple connected rigid patches and
use the segmentation results to determine the global nodes.



Figure 2. Human motions exhibit temporal smoothness between
adjacent frames.

Finally, we estimate the rotation parameters to warp the
piece-wise rigid global template back to each input frame in
order to recover the full body geometry for the entire motion
sequence.

3.1. Pairwise Surface Matching

To build the global template, we first need to register the
surfaces from adjacent motion frames. We use a deforma-
tion graph technique similar to [40]. Given a sequence of
captured N motion frames {P n|n=1,...,N}, where a frame
Pn has κ vertices {vi|i=1,...,κ}, where vi ∈ R3, we first
uniformly sample a set of graph nodes G = {g1, g2, ..., gm}
(where m << κ) on the surface Pn. Once we have graph
nodes, we use the deformation of graph nodes to represent
the movement of vertex. Specifically, we use affine transfor-
mation A = {At}mt=1 and b = {bt}mt=1 to parameterize the
deformable movement of a graph node. After deformation,
the new position of a vertex v can be written as:

v′ = f(v,A, b) =

m∑
t=1

wt(v)[At(v − gt) + gt + bt] (1)

where wt(v) is the weighing factor of a graph node gt
on the vertex v. In particular, wt(v) = max(0, (1 −
d2(v, gt)/r

2)3), where d(v, gt) is geodesic distance be-
tween v and gt and r is the distance between v and its K-
nearest nodes in the geodesic distance domain (we use K=4
in our experiments).

Once we have constructed the deformation graph, we
align the surface onto other frames by finding the optimal
affine transformation of its graph nodes. Recall that our in-
put is a sequence of deformable surfaces. To align all the
surfaces, a brute-force approach is to use non-rigid registra-
tion [6]. A major drawback of using this approach is the
lack of stability: deformation errors would accumulate over
the frames and can result in failure of the algorithm.

An alternative solution is to perform pairwise correspon-
dence matching [22]. This approach attempts to find corre-
spondences between adjacent meshes. Compared with their
inputs, our surface sequences are more challenging due to
incomplete geometry and drastic motions. As shown in Fig.
2, although largely overlapped, adjacent surface meshes ex-
hibit temporal smoothness between adjacent motions. Fur-

thermore, the non-rigidity of human body geometry can
cause large errors even in the presence of small motions
since affine transform is no longer sufficient to character-
ize the motion. We propose to solve these challenges by
exploiting the temporal coherence. As shown Fig. 1, adja-
cent motion frames are highly consistent due to the motion
smoothness. We therefore add a temporal smoothness term
to the pairwise correspondence energy function in order to
enforce the motion continuity. In particular, we register
three consecutive frames (i.e. we consider both forward and
backward motion) at the same time. As shown in Fig. 1, we
warp a frame i onto its previous (i−1) and successive (i+1)
frames. Therefore, our pairwise correspondence matching
energy function is defined as:

Etotal = λ1E
±
rigid + λ2E

±
smooth + λ3E

±
fit + λ4Etempo

(2)
In this equation, we omit the frame stamp n in superscript
and use ”+” for forward motion ”n → n + 1” and ”−” for
backward motion ”n → n − 1”. λ1 ∼ λ4 are weighing
factors for balancing the regularization terms. In our exper-
iments, we use λ1 = 100, λ2 = 20, λ3 = 1 and λ4 = 5.
Next, we explain each energy term in Eqn. 2 in details.

The first term Erigid constraints the rigidity enforced by
the affine transformation,and thus is defined as:

Erigid =
∑
G

(
(aT1 a2)2 + (aT2 a3)2 + (aT1 a3)2

+ (1− aT1 a1)2 + (1− aT2 a2)2 + (1− aT3 a3)2
)

(3)

where a1, a2 and a3 are the three column vectors that form
the 3× 3 matrix At.

The second term Esmooth enforces the spatial smooth-
ness of the geometric deformation in one frame and it is
written as:

Esmooth =

m∑
t=1

∑
k∈ν(t)

ŵ(t,k)||At(gk − gt) + gt+

bt − (gk + bk)||2
(4)

where ν(t) is node gt’s neighbor that shares the same edge
in the sub-sample graph.

We adopt a data fitting termEfit similar to Iterated Clos-
est Point (ICP) to measure vertex displacements between
the reference frame and the target frame. The fitting cost
consists of two components: one for minimizing the point-
to-point distances and the other for minimizing the point-to-
plane distances. Further, instead of using the closest points
as correspondences, we trace an undirected ray ni along the
normal direction of the source vertex vi and choose the ver-
tex that is the closest to the ray-target surface intersection



Figure 3. Pairwise correspondence matching results. We show the
target frames in the first column. We compare our registration
results (third column) with results of [22] (second column).

as the temporary correspondence ci:

Efit =
∑
i∈P

λpoint||vi − ci||2 + λplane|nTi (vi − ci)|2 (5)

In our experiments, we use λpoint = 0.1 and λplane = 1.
Finally, we propose a temporal regularization term

Etempo to preserve the motion continuity among three con-
secutive frames, i.e. from frame n to frame n − 1 as well
as frame n+ 1. More specifically, we constrain the current-
to-next motion {A+

t , b
+
t }mt=1 by current-to-previous motion

{A−t , b−t }mt=1. Since motions between adjacent frames are
similar, we formulate a new energy term Etempo to force
A−t A

+
t close to an identity matrix, and minimize A−t b

+
t +

b−t :

Etempo =

m∑
t=1

||I−A+
t A
−
t ||2F + ||A−t b+t + b−t ||22 (6)

where I is an identity matrix.
In our implementation, we solve Equation. 2 in an itera-

tive manner by using the Gauss-Newton method.
To illustrate the effectiveness of pairwise correspon-

dence optimization algorithm, we show our frame align-
ment results in Fig. 3 and compare with [22]. Notice that
the input frames exhibit severe occlusions and/or geometric
truncations. Our algorithm still generates accurate align-
ment results with fewer artifacts due to the consideration of
temporal smoothness term.

Figure 4. Patch segmentation. (a) All aligned graph nodes in the
global template; (b) Grouped nodes (color-coded) after K-means
clustering; (c) Final segmentation result after graph-cut.

3.2. Global Template Construction

Recall that our input frames are incomplete and exhibit
many missing parts due to occlusions/truncations. We ob-
serve that the occluded geometry may appear in later frames
as the pose changes. So we set out to align all input frames
{P n|n=1,...,N} into an optimized pose P 0 where nearly all
occluded regions are filled. Notice that we have already
obtained dense correspondences using the optimization al-
gorithm described in Section 3.1, similar to [24, 12],we fur-
ther define an energy functionEglobal as follow to construct
a global template:

Eglobal =

N∑
n=1

(λrE
n→0
rigid + λsE

n→0
smooth) + λcEcorr (7)

where Erigid and Esmooth are the same as in Eqn. 2. Ecorr

is a data term to impose the distant consistency between
corresponding vertices in adjacent frames. Ecorr is defined
as:

Ecorr =

N−1∑
n=1

||f(P n,An→0, bn→0)

−f(f(P n,A+, b+),An+1→0, bn+1→0)||2
(8)

where f(·) is the deformed position from Eq.1.
In our experiment, we use λr = 150, λs = 5 and λc = 1.

We iteratively solve the equation via Gauss-Newton opti-
mization to sequentially align consecutive frames to obtain
a global optimal alignment.

Once we align all input frames, we then ”stitch” them
together to form the final global template. Notice that di-
rectly fusing the point clouds can lead to large errors such
as discontinuity. We instead fuse their gradients and then
reintegrate the surface. The process is analogous to image
completion in the gradient domain and in our solution we
apply poisson surface reconstruction [19] to obtain the re-
constructed template mesh.

3.3. Patch Segmentation

Once we have the global template, we map all input
frames {P n|n=1,...,N} onto the global template mesh P 0



through a common deform graph G0. We assume that the
topology (e.g., the number of nodes and edge connectivity)
remain consistent across frames. Specifically, we segment
the global template mesh P 0 into patches and treat the ge-
ometry of each patch relatively rigid. We then use the cen-
troid of each patch as the node in the global deform graph
G0. In contrary to [3] in which the patch segmentation is
performed based on geodesic distance, we also consider the
motion similarity among vertices.

In particular, we set out to partition the vertices ṽ in P 0

into relatively rigid subsets. For an input frame P n, we
use v′ and g′ to represent the vertex and graph node re-
spectively after the global registration. We then perform
K-means clustering for all aligned graph nodes according
to their Euclidean distances. We set the pre-defined num-
ber of clusters K as the maximum number of deform graph
nodes in all N frames.

For each vertex ṽi in global template mesh P 0, we first
find its K-nearest neighbors Ω(ṽi) in the aligned vertices
v′ of all frames {P n|n=1,...,N}. We then calculate the
weight between ṽi and cluster cj using the mean value of
all weights between vertices v′ in Ω(ṽi) and graph nodes g′

in cj :

w(ṽi, cj) =
∑

v′∈Ω(ṽi)

∑
g′∈cj

w(v′, g′)/S (9)

where S is the total number of valid w(v′, g′).
Since w(v′, g′) corresponds to the weighing factor of a

graph node g′ on vertex v′, we can also use w(ṽi, cj) to
determine how significance of cluster cj with respect to ṽi.
The set of vertices affected most by the same cluster should
have a relative similar rigid motion. Therefore, we can sim-
ply treat weight w(ṽi, cj) as the data cost for assigning ṽi
to cluster cj . We further use the pots form smoothness cost:
p(ṽi, ṽk) = 0 when ṽi, ṽk have the same label and belong
to the same triangle in P 0 and 1 otherwise. Finally, we
formulate the energy function as:

E = −
∑
ṽi

w(ṽi, cj) + λ
∑

{ṽi,ṽk}∈N

p(ṽi, ṽk) (10)

where λ is a weighting factor. To find an optimal solution,
we apply the graph-cut algorithm [9] and we group vertices
with the same label into a patch. An example of segmenta-
tion result is shown in Fig. 4.

3.4. Surface Expansion and Patch Warping

Once we partition the global template P 0 into K
patches, We treat each patch patchτ ’s centroid gt as the
graph node.

To warp the global template P 0 back to each frame P n,
we adopt a two-step approach to first approximate and then

Figure 5. Surface expansion result. Our patch expansion algorithm
can effectively reduce the misalignment between deformed frames
and the global template.

Figure 6. Weighted node estimation using geodesic distance. (a)
original input mesh which is truncated; (b) the global template
after surface expansion, Where corrupted regions are marked in
red; (c) our weighted node estimation, where each black node
is weighed by its distances between three closet neighbors (red
nodes).

optimize the graph motion parameter {{A0,n
t , b0,nt }Kt=1}Nn re-

spectively. We first conduct the closest point approxima-
tion, second step is to further optimize them which is con-
strain by adjacent temporal information.

Recall that we have already aligned each input frame
{P n}Nn=1 to an optimal position {P n→0}Nn=1 when building
the global template. We can thus directly convert P n→0’s
graph node’s motion {At, bt}mt=1 to each vertex vi’s rigid
rotation Ri and translation T i by further decompose Eq. 1.

Every vertex vni in P n can be viewed to go through a
rigid motion Rn→0

i ,T n→0
i to an optimized target vn→0

i af-
ter deformation and we can then warp vn→0

i back through
vni = R0→n

i vn→0
i + T 0→n

i , where R0→n
i = inv(Rn→0

i )
and T 0→n

i = −inv(Rn→0
i )T n→0

i . To approximate the
each gt’s motion parameter when warping it to P n, we lo-
cate the graph node gt’s closest point vn→0

i′ in P n→0 and
use vn→0

i′ ’s {R0→n
i ,T 0→n

i } as the motion parameter. How-
ever, from Fig. 5, we observe that the deformed frame and
the reconstructed global template can still exhibit relatively
large misalignments. To better approximate the motion pa-
rameters, we present a patch based surface expansion ap-
proach based on [48] to better fit global template onto the
deformed frame P n→0:

Eexpan =
∑
γ∈Tk

||v0
γ + dγn

0
γ − cγ ||2

+λpatch

K∑
patchτ

∑
ν∈patchτ

∑
k∈η(νγ)

|di − dk|2
(11)

Specifically, we trace a ray from each vertex v0
γ on the

global template mesh along its normal direction n0
γ to the

target deformed mesh P n→0. Since P n→0 may be trun-



Figure 7. Our warping result (right) in comparison with direct non-
rigid registration result (left).

cated due to occlusion, not all v0
i will be able to find in-

tersections with the deformed mesh P n→0. We denote
the ones we manage to find the corresponding points as
{v0
γ , cγ , n

0
γ}γ∈Tk . The first term of the Eexpan aims to

minimize the distance dγ between vertex v0
γ and its inter-

section point cγ . The second part regularization term en-
sures smoothness. We enforce it by setting di close to its
K-nearest neighbors dk in its patch patchτ . It will also
propagate d to non-correspondence vertex. Fig. 5 shows
the results before and after optimizing di.

A further comparison between the expanded global tem-
plate P n

expan with each deformed input frame P n as shown
in Fig. 5 illustrates that the expanded global template re-
covers the occluded parts. We again trace a ray from
the global node gt along its normal direction to determine
whether gt intersects with the target deformed frame P n→0.
If yes, we adopt {R0→n

t ,T 0→n
t } and further convert it to

{A0→n
t , b0→n

t } from its closest point in P n→0 as nodes mo-
tion parameter. If not, we approximate its motion parameter
as weighted average of its K-nearest (K=3 in our experi-
ment) known motion parameters where the weights corre-
spond to geodesic distance, as shown in Fig. 6.

After we warp the expanded global template P n
expan

back to each input frame P n, we obtain the initial warped
position of the global template {P 0,n}Nn=1. To ensure the
temporal coherency between each frame, we further ad-
just the motion parameter {{A0,n

t , b0,nt }Kt=1}Nn globally from
each expanded global template P n

expan to each input frame
P n by introducing a temporal term Ẽtempo and a data term
Ẽdata to improve smoothness:

Ẽtempo =

N−1∑
n=2

||f(P n+1
expan,A

0,n+1, b0→n+1)

+f(P n−1
expan,A

0→n−1, b0→n−1)

−2f(P n
expan,A

0→n, b0→n)||2

(12)

Ẽdata =

N−1∑
n=2

||f(P n
expan,A

0→n, b0→n)− P n
expan||2

(13)

where Ẽdata forces adjust vertices to be close to the initial
approximation.

Table 1. Data Information
Data Avg vertices Frames Avg nodes

Dance 32K 160 353
Yoga 31K 361 340
Ballet 29K 200 350
Ballet2 27K 230 332
Boxing 23K 20 323
Singing 19K 23 342
Guitar 29K 21 356

Figure 8. Our reconstruction in comparison with the poisson re-
construction.

Finally, we construct the energy function as Ẽajust =

αrẼrigid + αsẼsmooth + αtẼtempo + αdẼdata. In our
experiment, αr = 100, αs = 30, αt = 1 and αd = 5 and
solve for the optimal results via Gauss-Newton technique.

Fig. 7 shows the warping back result use our weighted
node approximation. And we also use non-rigid registra-
tion as the comparison which directly finds the warp back
motion parameters from the global template to each frame.
The non-rigid registration works well in overlapped regions.
However, it causes severe critical bending effect in non-
overlapped area. Our weighted node approximation can
estimate the warping parameters accurately by combining
the remaining nodes not in missing part weighted by their
geodesic distance and we further use the temporal coher-
ence constraint for further ensure the motion smoothness
between adjacent frames.

4. Experiment

We perform experiments on captured real-life human
motion sequences to validate the effectiveness of our algo-
rithm.

To capture high fidelity motion, we build a multi-camera
system for data acquisition. Our system equipped with 20
Point Grey cameras. Each camera has resolution 1280 ×
720. We have captured seven motion sequences to test our
algorithm. Five sequences (Yoga, Dance, Ballet, Ballet2
and Guitar) contain full human body, eg. and the other
two sequences (Boxing and Singing) only contain the up-
per body. Detailed information of our test data is shown
in Table. 1. All input sequences are suffered from heavy
occlusion and truncation.

In pre-processing steps, we first recover a sparse
point cloud using the Patch-Based Multi-View Stereo
(PMVS) [13]. We then use Poisson surface reconstruc-



tion [19] with the surface trimmer to generate an initial sur-
face mesh. Due to the limited camera field-of-view and/or
occlusions, the initial surface mesh might be truncated or
have large holes. By taking these incomplete initial surface
meshes as input, our algorithm restores the complete sur-
face shape for every motion frame and hence recover the
motion sequence with high-fidelity. We performed recon-
struction using the four-step algorithm described in section
3. All computations are performed off-line on a PC with
CPU Intel Core i7-5820K and 32 GB memory. In average,
the running time (per frame) of our algorithm is as follow:
pairwise surface matching takes around 20 seconds, global
template alignment and patch segmentation costs 65 and 30
seconds respectively(both only perform once for the entire
sequence), and template warping takes 10 seconds.

We also compare our algorithm with the Poisson surface
reconstruction for hole completion. The results are shown
in Fig. 8. Due to large chunk of missing data, the pois-
son reconstruction cannot complete the hole (e.g., the arm
regions) correctly. By utilizing a global template that con-
tains the full body geometry, our algorithm generates accu-
rate and smooth reconstruction.

4.1. Global Template Reconstruction Results

In the first step, we register incomplete surfaces from
the entire input sequence to generate a complete full body
global template.To generate the global template, we first ini-
tiate a deformable graph for the body surface mesh of every
input motion frame. We then find pairwise correspondences
by imposing our temporal coherence constraint. Finally, we
compute the affine transformations for every input surface
mesh to align different poses and generate the global tem-
plate. Fig.9 illustrates the global template generated by our
algorithm for three different input sequences (i.e., Boxing,
Dance, and Ballet). The results demonstrate that our global
templates are smooth and preserve some fine details at the
same time. In the second column of Fig. 9, we show the
composition of our global template by color-coding each
frame. It shows that the poses in a motion sequences are
complementary in geometry and by combining them, we
are able to obtain the complete shape geometry.When se-
quence is too long, Eq.7 may hard to converge.So in our
experiments, we set maximum frame number under 370.

4.2. Motion Reconstruction Results

Next, we segment the global template into connected
rigid patches and build a deformable graph by taking the
centroid of rigid patches as graph nodes. Finally, we warp
the global template back to every input motion pose to re-
store the complete body surface meshes. Our reconstruction
results are shown in Fig. 11, Fig. 12 and Fig. 14. Fig. 14
shows that our approach is capable of reconstruction full
or partial body motion from heavily corrupted input data

Figure 9. Global template reconstruction. The first column shows
corrupted input meshes from several frames. The second column
shows the alignment result of the entire sequence (every frame is
coded by a different color). The third column shows the global
template generate by our algorithm.

Figure 10. Compare our reconstruction result with [22] in various
of scene.

in various scenarios. Fig. 11 demonstrate that our algo-
rithm could also handle fast, drastic and rotating motion.
We can see that our approach can successfully restore trun-
cations and fill in large holes (e.g., face in the Yoga scene,
arms in the Dance scene, belly in the Ballet2 and legs in
the Ballet scene). Further, because we warp the global tem-



Figure 11. Our motion reconstruction results. Our approach is able
to restore truncated areas and fill in large holes. Please refer to the
supplemental material for more results.

Figure 12. The recovered geometry is consistent throughout the
entire sequences. Corresponding vertices are color-coded.

plate through entire sequences, our reconstruction results
are consistent in geometry throughout the entire sequences
as shown in Fig. 12. Such consistency implies that our re-
construction could be beneficial for future applications such
as consistent texture generation and data compression.

We perform experiments to compare our algorithm with
the state-of-the-art method [22] and [15]. Fig. 10 shows
the reconstruction comparison result. We can see that our
algorithm provide more accurate reconstruction in presence
of large holes/truncations caused by fast motions and oc-
clusion. This is mainly because we consider the temporal
coherence in surface alignment. We also perform quantita-

Figure 13. Quantitative evaluation in comparison with [22] on Bal-
let (a) and Dance(b).

Figure 14. Warping back results of singing, yoga and guitar with
close-up view (from left to right).

tive evaluation to illustrate performance. In particular, we
compute the mean Hausdorff distance between each pair
of visible input and reconstructed surface and use it as the
metric for quantitative evaluation. We compare the distance
plot of our algorithm with [22], [15], and our method with-
out patch segmentation on two input sequences(i.e. Dance
and Ballet ). As shown in Fig. 13, our reconstructions have
lower error for most of the frames.

5. Conclusions and Discussions

We have presented a graph-based non-rigid shape reg-
istration framework that can simultaneously recover 3D
human body geometry and estimate motion at high-
fidelity.Our approach is especially effective in presence of
large holes and truncated areas.We propose a temporal reg-
ularization term to get more accurate pairwise correspon-
dence than the state-of-the-art method to generate a global
body template by registering all poses in the acquired mo-
tion sequence. We also developed a new segmentation algo-
rithm to divide the global template into locally rigid patches
and built a deformable graph using the rigid patches.

Our approach has several limitations. First, our pro-
posed global template generation algorithm cannot handle
topology change such as cross arms and hands. One possi-
ble solution could be first automatically detecting topology
change and then splitting the sequence into segments with
the same topology and constructing separate global tem-
plate. Second, subtle details(e.g., fingers) are lost in our
reconstruction since they are not effectively represented in
our deformable graph. To achieve even higher-fidelity, we
can recover the subtle motions in a separate pass and then
add them back to our reconstruction.
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