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Abstract—Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since
the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric
multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot.
Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum.
Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing.
We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations
across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance
map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive
synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for
non-Lambertian surfaces.

Index Terms—Shape Reconstruction, Surface Reflectance, Multi-Spectral, Light Field
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1 INTRODUCTION

S URFACE shape and reflectance reconstruction from images is
a fundamental problem in computer vision that can benefit

numerous applications ranging from graphics rendering to scene
understanding. Well-established solutions based on multi-view
stereo [1], [2], [3] or photometric stereo [4], [5], [6], [7] often
assume Lambertian surfaces, from which the light is equally
reflected towards all directions. However, most real world ob-
jects have more complex reflectances that exhibit view-dependent
characteristics (such as specular highlights). These surface violate
the Lambertian assumption and result in erroneous depth and
reflectance estimation.

In recent years, light field has emerged as a powerful tool
in computer vision and graphics for 3D-related applications. A
light field camera can be essentially viewed as a multi-view
device. Notable examples include the hand-held light field camera
[8] and the light field camera array [9]: the former combines a
lenticular lens array and a single high-resolution sensor with each
lenslet emulating a pinhole camera, while the latter uses multiple
cameras in order to allow for wide baseline and large Field-
of-View (FoV) acquistion. In both settings, the viewpoints are
arranged on rectangular grids. Earlier uses of light field focused
on refocused rendering [8], [10] and view interpolation [11]. More
recent approaches have employed light field for 3D reconstruction
[12], [13], [14]. To handle non-Lambertian reflectance, focus cues
[15], angular coherence [16] and BRDF-invariants [17], [18] are
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Fig. 1. Left: our concentric multi-spectral light field (CMSLF) array. We
arrange the cameras on concentric circles, where each circle has the
same number of cameras that capture at the same specific spectrum.
A multi-spectral ring light surrounding the cameras provides direction-
varying illumination for each camera circle. Right: our reconstruction
results. (a) scene photograph; (b) recovered normal map; (c) recovered
3D surface; and (d) recovered reflectance map.

proposed on light field data. However, additional surface priors
such as smoothness or polynomial shape need to be imposed.

In this paper, we introduce a novel concentric multi-spectral
light field (CMSLF) array that arranges the cameras on concentric
circles. As shown in Fig. 1, each circle of cameras captures images
at the same specific spectrum. We show that by coupling with a
multi-spectral ring light, our CMSLF is advantageous in surface
shape and reflectance reconstruction. This is mainly because 1)
through spectral multiplexing, we are able to simultaneously sam-
ple multiple viewpoints under varying lighting directions without
interference; and 2) our concentric viewpoint arrangement results
in a unique single-peak pattern in specularity variations across
views that can be utilized for specularity analysis and thus enables
robust depth estimation for non-Lambertian points.



We develop tailored algorithms based on our CMSLF design
for surface shape and reflectance estimation. Specifically, we first
formulate a dichromatic Phong reflectance model under CMSLF
using the surface camera (S-Cam) representation [19]. An S-
Cam models angular reflectance distribution with respect to a 3D
scene point. It can be formed by tracing rays originated from
the scene point back to the captured light field. By analyzing
the reflectance model, we show that diffuse and specular surface
points exhibit very different characteristics in S-Cam under our
concentric viewpoint arrangement. Specifically, the specualrity
variations across views form a unique single-peak pattern which
can enable robust depth estimation for specular points. For depth
and reflectance estimation, we first initialize a depth map using
multi-view stereo on S-Cams. We separate the diffuse and specular
points by thresholding the intensity variance (because the diffuse
points have constant intensity across views).We then rely on the
single-peak pattern to refine the depths of specular points. Through
our specularity analysis, We can subtract the specular components
from the captured intensities to form specular-free S-Cams. We
finally apply the photometric cues on the specular-free S-Cams
to jointly estimate the surface normal and reflectance. We iterate
these steps for refinement. We conduct extensive synthetic and real
experiments to show that our approach is accurate and robust. We
also show that our method outperforms state-of-the-art multiview-
based and photometric stereo-based methods in shape and re-
flectance reconstruction, especially for non-Lambertian surfaces.

2 RELATED WORK

Our work is closely related to reflectance modeling and image-
based surface shape and reflectance reconstruction.

Modeling surface reflectance is important to computer vision
and graphics. The classical method in computer graphics uses
the Lambertian model to characterize diffuse reflection and the
Phong model for specular reflection. Although this method is not
theoretically correct, it is still widely used and indispensable in
computer graphics due to its simplicity in mathematical modeling.
To characterize complex surface reflectance, the bidirectional
reflectance distribution function (BRDF) [20] that measures the
ratio between incident irradiance and exit radiance at a surface
point is commonly used. The full BRDF model of a point requires
a large parameter space as it exhausts all combinations of incident
and exit lighting directions. A special case of the BRDF model is
the dichromatic reflectance model, which was originally proposed
by Shafer [20] to model dielectrics. It assumes that the BRDF
of a surface can be decomposed into two additive components:
the interface (specular) reflectance and the body (diffuse) re-
flectance. Since all wavelength variations can be factorized from
the two components, it is well suited for modeling multi-spectral
reflectance. In our multi-spectral specular analysis, we combine
the dichromatic reflectance model with the classical Phong model
to characterize the surface reflectance sampled by our CMSLF.

Recovering the surface shape and reflectance from images is
a fundamental problem in computer vision. The most popular
two classes of methods are multi-view photogrammetry [2], [21],
[22], [23], [24], [25], [26] and photometric stereo [4], [5], [6],
[7], [27], [28], [29]. The former ones recover the 3D shape
by triangulating rays from multiple viewpoints while the latter
perform reconstruction under a fixed viewpoint but with various
lighting directions. Although great success has been achieved
on diffuse surfaces, specular highlights pose great challenges as

they violate the color consistency assumption. Some methods
[15], [30], [31] consider specular highlights as outliers and try
to remove them. Some [32], [33], [34] rely on geometric and color
distribution priors to compensate for specular regions. A recent
work by Mecca et al. [35], [36] separates specular points from
pure Lambertian reflection and treat them differently. However,
their approach needs to take many images (around ten) as input.
Oxholm and Nishino [37] recover the shape and reflectance of
the homogeneous surface from a single image captured under
uncontrolled illumination. Fyffe et al. [6] use spectral multiplexing
to perform single-shot photometric stereo. Ikehata et al. [38] and
Wu et al. [39] use the sparse representations to solve photometric
stereo to compensate the corruptions caused by specularity. Zuo
et al. [40] estimate surface geometry and albedo from RGB-
D videos. Chandraker [41], [42] explores the motion cue for
recovering shape and reflectance of a homogeneous object under
a single directional light source. Wang et al. [17] extend the
similar motion cue to spatial-varying BRDF using light field.
Li et al. [18] improve the optimization framework for shape
estimation with BRDF-invariant features. In this work, we present
a novel concentric multi-spectral light field that is advantageous
for handling non-Lambertian scenes because the concentric setting
results in a unique pattern in specularity variation.

3 OUR APPROACH

In this section, we present our approach for surface shape and
reflectance reconstruction using our concentric multi-spectral light
field (CMSLF). We first present the system configuration (Sec-
tion 3.1). We then formulate a physics-based reflectance model
that characterize the CMSLF using the surface camera (S-Cam)
(Section 3.2). Next, we perform a specularity analysis on our
reflectance model and show that the specularity variations across
views exhibit a unique single-peak pattern. We show that it is
useful for the depth estimation for specular points (Section 3.3).
Finally, we describe our shape and reflectance reconstruction
algorithm for non-Lambertian surfaces (Section 3.4).

3.1 Concentric Multi-spectral Light Field
As shown in Fig. 1, our CMSLF acquisition system consists of
multi-spectral cameras and light sources that are arranged on
coplanar and concentric circles. Each circle has the same number
of cameras which are uniformly spaced and capture the same spe-
cific spectrum. The surrounding multi-spectral ring light provides
direction-varying illumination for each camera ring. It’s worth
noting that we use narrowband spectral filters for all cameras and
light sources. We can, therefore, simultaneously sample multiple
viewpoints under varying lighting directions without interference
via spectral multiplexing.

To parameterize the CMSLF, we adopt the classical two-plane
parametrization (2PP) [11] light field representation. Since our
cameras are on coplanar circles, we set the center-of-projection
(CoP) plane as the st plane at z = 0 and the image plane as the
uv plane at z = 1. We use st for camera indices and uv for pixels.

Assuming we have m concentric camera rings in total and n
cameras on each ring in a CMSLF, the camera position on the st
plane can be written as (s(i, j), t(i, j)) = (rj cosφi, rj sinφi),
where i ∈ {1, ..., n} is the camera index in each concentric ring;
j ∈ {1, ...,m} is the ring index, m also is the total number of
spectral samples; rj is the radius of the jth camera ring; φi =
(i − 1)φ̃ is the spanned angle between the ith camera spoke and



the x-axis (φ̃ = 2π/n is the interval angle between neighboring
camera spokes). The jth camera ring captures wavelength λj .

On the illumination side, since the lighting spectra match
the ones sampled by the camera array, the number of point
light sources equals to the number of camera rings (i.e., m).
Assuming the light source ring is on a circle with radius rl,
the position of the jth light source in 3D can be written as
Pj = [rl cos θj , rl sin θj , 0] where θj = θ1 + (j − 1)θ̃ (θ1 is
the angular position of the first light source and θ̃ = 2π/m is the
angular interval between neighboring light sources).

We use the vector P = [P1; ...;Pm] to represent the set of all
light source positions. Since we use narrowband spectral filters,
the spectral illumination emitted from the jth point light source
can only be received by the jth camera ring.

3.2 CMSLF Reflectance Model

We then formulate a physics-based reflectance model that charac-
terize the CMSLF using the surface camera (S-Cam) representa-
tion [19].

3.2.1 Dichromatic Phong Model
We adopt the Dichromatic Reflectance Model (DRM) [43] to
model reflectance. DRM separates the surface reflectance into
body reflectance and interface reflectance, both terms account for
geometry and color. DRM is suitable for modeling inhomogeneous
materials.

Given a light source with the spectral distribution E(λ) where
λ refers to the wavelength, and a camera with spectral response
functionQ(λ), the observed image intensity I under DRM at pixel
p can be formulated as:

I(p) =wd(p)

∫ λN

λ1

R(p, λ)E(p, λ)Q(λ)dλ

+ ws(p)

∫ λN

λ1

E(p, λ)Q(λ)dλ

(1)

where [λ1, λN ] is the range of sampled wavelengths; R(p, λ) is
the surface reflectance; wd(p) and ws(p) are geometry-related
scale factors. The first term in Eq. 1 represents body reflectance
that models light reflection after interacting with the surface
reflectance. The second term represents interface reflectance that
models light immediately reflected from the surface and thus
causing specularities.

We apply numerical integration with step λ̃ on Eqn. 1 which,
after dropping pixel p becomes:

I = wdREQ + wsJEQ (2)

where J is a row vector with all ones, R = [R(λ1), R(λ1 +
λ̃), ..., R(λN )], E = diag(E(λ1), E(λ1+λ̃), ..., E(λN )) which
is a diagonal matrix, and Q = [Q(λ1) Q(λ1 + λ̃), ..., Q(λN )]T .

To take the scene geometry into consideration, we formulate
the Phong dichromatic model that combines the classical Phong
model with the DRM and assumes the near point lighting (NPL).
Specifically, the diffuse and specular factors wd and ws are
modeled with lighting position, viewing direction, surface normal
and roughness. The image intensity I can then be written as:

I = kd
( L ·N
‖P −X‖2

)
REQ + ks

( (D · V )α

‖P −X‖2
)
JEQ (3)

j
i

j
i

MSS-Cam (Correct depth)

MSS-Cam (Incorrect depth)

Fig. 2. Multi-spectral Surface Camera (MSS-Cam) sampling. Top: MSS-
Cam sampled at the correct depth; Bottom: MSS-Cam for the same point
but sampled at an incorrect depth.

where N is the surface normal at a 3D point X; P is the position
of light source; L = (P−X)/‖P−X‖ is the normalized lighting
direction; V is the viewing direction; D = 2(L ·N)N −L is the
reflection direction; α is the shininess parameter that models the
surface roughness; kd and ks refer to the diffuse and specular
surface reflectivity.

3.2.2 Multi-spectral Surface Camera (MSS-Cam)

Next, we apply the Phong dichromatic reflectance model on
our CMSLF using the Surface Camera (S-Cam) [19]. S-Cam
characterizes the angular sampling characteristics of a light field.
Given a 3D scene point, its S-Cam can be synthesized by tracing
rays originated from the scene point into the light field to fetch
color (see Fig. 2).

After applying the S-Cam on our CMSLF, we obtain the
multi-spectral S-Cam (MSS-Cam). We now present the MSS-
Cam image formation using our dichromatic Phong model.
Given a pixel (u, v) in the center camera view with position
(s, t) = (0, 0), and assuming its corresponding 3D scene point
is X(u, v, z) = (x, y, z), we can synthesize its MSS-Cam MX

from the captured multi-spectral light field images. The pixels in
a column of MX are taken from cameras on the same ring that
is sampled under a specific spectrum according to our concentric
camera/light source arrangement. Moreover, each column captures
the specular variation with respect to a single light source for non-
Lambertian points. The pixels in the same row of MX are taken
from cameras on different rings but at the same camera spanned
angle. To obtain MSS-Cam, we trace rays from the pointX to each
camera in the CMSLF. For a pixel (i, j) in the MX , it samples
the ray from the camera at (s(i, j), t(i, j)). By applying Eqn. 3 ,
we can write the intensity at an MSS-Cam pixel MX(i, j) as:

MX(i, j) =kd
( Lj ·N
‖Pj −X‖2

)
cBjEjQj

+ ks
( (Dj · Vi,j)α

‖Pj −X‖2
)
JEjQj

(4)



where Vi,j is the viewing direction from the X to the camera
(s(i, j), t(i, j)); Dj is the reflection direction of Lj ; cBj = R
indicates the linear decomposition of the reflectance spectra R,
with c = [c1, ..., cw] as the reflectance coefficient vector and Bj
as a w×h linear reflectance basis matrix under the spectral range
[λj − (h−1)

2 λ̃, λj + (h−1)
2 λ̃]. Ej and Qj have the same spectral

range and are with sizes h× h and h× 1 respectively.

3.3 Specularity Analysis

We now perform a specularity analysis on MSS-Cam and show
that the specularity variation across views exhibits a unique single-
peak pattern that is useful for specular region depth estimation.

We first separate the diffuse and specular points by threshold-
ing the intensity variance because the diffuse points have constant
reflectance across views. Fig. 2 shows that the MSS-Cam sampled
at the correct scene depth exhibits photo consistency for ideal
diffuse points (same intensities for pixels at the same column) and
smooth intensity variations for specular points. If MSS-Cam is
sampled at an incorrect depth, rays are integrated from different
surface points. This results in random fluctuation of intensities
in the MSS-Cam. The photo consistency for diffuse points in an
MSS-Cam image MX can be formulated as:

C(MX) =
1

m

m∑
j=1

std(MX(1, j), ...,MX(n, j)) (5)

where std(·) is the standard deviation function. This function
indicates that the standard deviation for pixels taken from the same
column should be very close to 0 if the point is diffuse and the
MSS-Cam MX is sampled at the correct depth. We therefore set
a threshold on C(MX) to separate diffuse and specular points.

For specular points, we show that the specularity variation
across views exhibits a unique single-peak pattern because of
the concentric configuration of cameras. Intuitively, as shown in
Fig. 3 (a), the cone-shaped lighting directions result in a reflection
cone that is symmetric to the normal. Since the light field camera
sampling for each spectrum is on a circle, the intensities from
each column of the MSS-Cam will be changing like a sinusoidal
curve with the camera’s sampling angle φ from 0 to 2π in the
circle (see Fig. 3 (b)). Below we formalize this property as a
proposition and provide its proof.

Proposition 1. The specularity variation along the column of a
MSS-Cam always forms a single-peak function.

Proof. For simplification, we consider a specular point in 3D,
X = [0, 0, z], with the surface normal N . Its MSS-Cam MX

sampled at the correct scene depth can be formulated by applying
Eqn. 4. Now we analyze the intensity variation along the jth
column of its MSS-Cam under the sepctral light source j at
Pj = [rl cos θj , rl sin θj , 0]. Assuming the normalized lighting
direction is L, and the reflection direction w.r.t. the surface normal
is D = [dx, dy, dz]. The camera position from the camera ring is
[rj cosφ, rj sinφ, 0]. The viewing direction can be computed as
V = [rj cosφ, rj sinφ,−z]/

√
r2j + z2. The diffuse component

and the term ksJEjQj/‖Pj −X‖2 in the specular component
in Eqn. 4 are constants cd and cs along the jth column of the
MSS-Cam, therefore, the intensity along the jth column of the
MSS-Cam can be rewritten as:
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Fig. 3. The specularity variations in MSS-Cam exhibit unique pattern in
our CMSLF. (a) The cone-shaped lighting directions result in a reflection
cone that is symmetric to the normal. (b) Because of concentric camera
setting on circles, the intensities from each column of the MSS-Cam will
be changing on a sinusoidal curve (single-peak in the interval [0, 2π]). (c)
An MSS-Cam with specularity. (d) We plot the pixel intensities from the
same MSS-Cam column and show that they form single-peak patterns
(e) The camera spanned angles corresponding to the peaks of each
curve in (d) form a sinusoidal curve.

I(φ) = cd + cs(D · V )α

= cd +
cs

(r2j + z2)
α
2

(rjdx cosφ+ rjdy sinφ− zdz)α

= cd +
cs

(r2j + z2)
α
2

(cv sin(φ+ φ̃)− zdz)α

(6)

where

cv =
√

(rjdx)2 + (rjdy)2

sin φ̃ =
dx√
d2x + d2y

, cos φ̃ =
dy√
d2x + d2y

The terms cd and cs/(r2j +z2)
α
2 are constants along each column

of the MSS-Cam. Therefore we can see that the intensity variation
along a column of the MSS-Cam is an exponential sinusoidal
curve w.r.t. the camera’s angle φ in the ring, which is a single-
peak function in the interval of [0, 2π].

Notice that this proposition will not be affected by the arrange-
ment of multi-spectral light sources. The spectral arrangement
results in different shape of the curve because it changes the
column ordering, but curve always remains one period of a
sinusoid. Further, since the sinn(·) can be expanded as the Fourier
series, we can approximate Eqn. 6 as a Fourier series w.r.t. the
camera’s angle φ in the ring as:

I(φ) ≈ F (φ) = a0 +
∑
p

ap cos pφ+
∑
p

bp sin pφ (7)



We therefore fit a set of Fourier series F1, ..., Fm to model
intensity variation of specular point per column in theMX . On the
other hand, as is shown in Fig. 3 (b) and (e), by taking the camera
spanned angles corresponding to the peaks from each specularity
curve, we can form a similar sinusoidal curve. We then fit another
Fourier series F0 to represent this curve of peak camera angles.
Therefore, if a point is specular, its intensity in MSS-Cam should
follow the consistency measurement below:

S(MX) =
1

m

m∑
j=1

‖U(j)− F(j)‖+ ‖Φ− F(0)‖ (8)

where U(j) = [MX(1, j), ...,MX(n, j)] are MSS-Cam pixels
from the same column, F(j) = [Fj(φ1), ..., Fj(φn)] is the fitted
Fourier series for this column. Φ = [φ

(1)
s , ..., φ

(m)
s ] are camera

spanned angles corresponding to the peaks from each column, and
F(0) = [F0(1), ..., F0(m)] is the Fourier series fitted for them.

3.4 Shape and Reflectance Reconstruction
Finally, we show how to apply the CMSLF reflectance model and
the specularity analysis on MSS-Cam for robust surface shape and
reflectance reconstruction. Our reconstruction pipeline is shown
in Fig. 4.

Depth Initialization. Given a pixel (u, v) and its corresponding
3D point X(u, v, z) in the virtual center view at [0, 0, 0]. We first
apply our photo-consistency measurement on the MSS-Cams with
every hypothetical depth z of X to initialize its depth as:

z′ = argmin
z

C(MX) (9)

We classify this point as diffuse or specular point by thresh-
olding the intensity variance across views. If a point is non-
Lambertian, we use Eqn. 8 refine its depth as:

z′ = argmin
z

S(MX) (10)

Note that we only perform Fourier series fitting for non-
Lambertain points because this process is time consuming and
applying it for all pixels would be inefficient.

Specular Component Subtraction. For non-Lambertain point,
given its inital depth, we retrieve its MSS-Cam and then subtract
the specular component to obtain a specular-free MSS-Cam.
Specifically, we first compute the vertical gradients of the MSS-
Cam to remove the diffuse component in Eqn. 4 as:

∇MX(i, j) =
(
MX(i+ 1, j)−MX(i, j)

)
= ks((Dj · Vi+1,j)

α − (Dj · Vi,j)α)
JEjQj

‖Pj −X‖2
(11)

By rearranging Eqn. 11, we have:

GX(i, j) = ∇MX(i, j)
‖Pj −X‖2

JEjQj
(12)

where GX(i, j) = ks((Dj · Vi+1,j)
α − (Dj · Vi,j)α).

Given the pre-calibrated term JEjQj and the lighting position
Pj (the calibration process is described in Section 4.2.2), and the
calculated gradients, we compute the observed G̃X to optimize the

Reflectance & Normal
 Estimation

s

 t

λ1
CMSLF

λm

Lambertian
Depth Estimation

Non-Lambertian
Depth Refinement

Specular
Component Subtraction

Iterative Refinement

Fig. 4. The algorithmic pipeline for shape and reflectance reconstruction.

surface normal N , specular reflectivity ks and surface roughness
α simultaneously through the following objective function:

argmin
N,α,ks

∑
i,j

‖G̃X(i, j)− ks((Dj · Vi+1,j)
α − (Dj · Vi,j)α)‖

(13)

where Dj = 2(Lj · N)N − Lj . As this optimization is non-
linear, we can apply the Levenberg-Marquardt method to solve the
specular parameters that satisfy the specularity gradient variations.

Given these specular parameters, we can then subtract the
specular components from our MSS-Cam and form a specular-
free MSS-Cam AX as:

AX(i, j) = MX(i, j)− ks
( (Dj · Vi,j)α

‖Pj −X‖2
)
JEjQj (14)

We form a row vector AX = [median(AX(:
, 1)), ...,median(AX(:,m))] by taking the median values
from each column of AX .

Normal and Reflectance Refinement. Finally, we apply multi-
spectral photometric stereo on our specular-free MSS-Cam to
obtain more accurate surface normal and reflectance. Our objective
function is formulated as:

argmin
N,c

((cW) ◦ (LN)T −AX) (15)

where ◦ is Hadamard product (element-wise multiplication),
L = [L1; ...;Lm]. The term W = [W1, ...,Wm] where
Wj = BjEjQj, which is composed of the pre-calibrated camera
and light source spectral responses. When the number of sampled
spectra is greater than or equal to the dimensions of the reflectance
spectra, that is w × 3 6 m, the above optimization can be
formulated as an over-determined linear system. We can write the
following linear system by unrolling the matrices in Eqn 15:

b = H \AT
X (16)

where

H =
W(1, 1)L(1, 1) W(1, 1)L(1, 2) W(1, 1)L(1, 3) . . . W(w, 1)L(1, 3)
W(1, 2)L(2, 1) W(1, 2)L(2, 2) W(1, 2)L(2, 3) . . . W(w, 2)L(2, 3)

...
W(1,m)L(m, 1) W(1,m)L(m, 2) W(1,m)L(m, 3) . . . W(w,m)L(m, 3)


b = [c1nx, c1ny, c1nz, . . . , cwnx, cwny, cwnz]

T

The surface normal and reflectance coefficients can be directly
derived from b. Otherwise, when w × 3 > m, we apply the
Levenberg-Marquardt algorithm to solve Eqn 15.

After recovering the surface normal, we update the depth
estimation through normal integration. We then re-compute all



MSS-Cams with the updated depths and repeat the above steps to
iteratively refine the shape and reflectance estimation.

For multi-spectral reflectance estimation, we fit a dense multi-
spectral reflectance R = c′B using the estimated reflectance
coefficients c′. B are the dense spectral sampling reflectance basis
functions determined on the Munsell color sets [44], [45].

4 EXPERIMENTS

In this section, we present synthetic and real experimental results
to evaluate our approach. All experiments are performed on a
desktop computer with Intel i7 7820 CPU (2.9GHz Quad-core)
and 32G memory. Our algorithm is implemented in Matlab.
Although we are able to recover multi-spectral reflectance, we still
show the reflectance maps in RGB for the ease of visualization.

4.1 Synthetic Experiments
To simulate our CMSLF images, we implement a multi-spectral
renderer to generate the input images. We consider the same
camera and light source setup as used in our real experiments
(described in Section 4.2.1). To simulate multi-spectral reflectance
from RGB textures, we use high-dimensional reflectance linear
basis to fit the missing spectra.

We first work on a simple sphere object with three different
types of reflectance: ideal diffuse (Type I), specular (Type II)
and specular with texture (Type III) (see Fig. 5). Through this
experiment, we show that our approach can be applied to a variety
of surface materials. In the material setting, the diffuse coefficients
are all set to 0.7; the specular coefficients for each material are set
to 0, 0.3, and 0.5 for Types I to III respectively; and the roughness
for Type II/III is set to 10. The radius of the sphere is set to 20 units
and the distance between the CMSLF and sphere is 120 units. As
for our CMSLF, the radius of our ring light source is 80 units and
contains 12 spectral light sources. We use a 12 × 8 concentric
camera array (i.e., 12 circles with 8 cameras on each circle).
The radius of the concentric camera circles ranges from 29 to 40
units with interval 1 unit for each circle in between. We consider
spectral samples between wavelength 440 nm to 660 nm with
interval 20 nm for both cameras and light sources. For each
camera, we simulate image of the object at resolution 320× 320.
For depth estimation, we discretize the depth values from 108
to 125 units with step 0.2. Our sphere has 76 depth layers. We
apply our algorithm described in Section 3.4 to recover the shape
and reflectance for the three types of sphere. Our reconstruction
results are shown in Fig. 5. To evaluate our shape reconstruction,
we compare our recovered normal maps with the ground truth
ones and compute the error maps. The maximum normal error
is less than 2◦ for all three cases. To evaluate the reflectance
reconstruction, we plot the multi-spectral reflectance curve for a
randomly sampled point on the sphere. We compare the curve with
the ground truth reflectance we set for the object. We can see that
the two curves are highly close for all three cases, which indicates
that our method recovers accurate multi-spectral reflectance for
various materials.

To evaluate our performance on more complex material mod-
els, we perform experiments using the MERL dataset [46]. We
use the same sphere and CMSLF setting, except that we use the
BRDF functions in the MERL dataset for material modeling. We
evaluate the reconstruction error for all materials. The average
normal error is 3.8◦. The complete set of results are included in
the supplementary material.
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Fig. 5. Synthetic results of a sphere object with three types of materials.
Top: we show the input image of the sphere models, the recovered
normal map, the error map of normal estimation in degree, and the
recovered reflectance (from left to right); Bottom: we show the multi-
spectral reflectance curve (red) of a randomly sampled point on each
sphere in comparison with the ground truth reflectance curve (blue).

Next, we perform synthetic experiments on two objects with
more complex geometries, a Buddha head (or buddha) and an
antique pendant plate (or plate). For these experiments, our light
source setting and spectral sampling scheme are the same as
the sphere object experiment. For the CMSLF, the radius of the
camera circles range from 4 to 2.9 with step 0.1. Each camera
renders images at a higher resolution (500 × 500) to capture
the fines details of the objects. For surface material, we set
the specular coefficients to 0.6 (buddha) and 0.4 (plate). The
roughness is set to 20 for both. The distances between objects
and camera are 41 (buddha) and 34 (plate). We discretize the
depth values in the range from 35 to 42 with step 0.1 for the
buddha and from 33 to 35 with step 0.1 for the plate. Our shape
and reflectance reconstruction results are shown in Fig. 6. We
evaluate our shape reconstruction in terms of normal errors and
we can see that the maximum normal error is less than 3◦ for both
objects. We also show our recovered 3D surfaces. We can see that
the geometric details are well preserved. We re-render the diffuse
images to show that our recovered reflectance is highly accurate.

We compare our shape reconstruction with two state-of-the-
arts light field-based depth estimation methods [30] and [18]. Tao
et al. [30] use specular properties in the epipolar plane images
(EPI) to recover glossy surfaces with light field. Li et al. [18]
develop an optimization framework to recover the shape and
reflectance for surfaces with spatial varying BRDF. Both methods
are expected to handle non-Lambertian surfaces well. We render
12 × 12 grid-based light field images and use them as input
to the two methods. We use the source codes provided by the
authors for testing. The comparison results on buddha is shown in
Fig. 7. We can see that our recovered 3D surfaces are with higher
quality. This is mainly because of two reasons: 1) our concentric
circular light field setting provide addition photometric cues for
non-Lambertian points depth estimation; and 2) our multi-spectral
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Fig. 7. Comparison results on synthetic data. We compare the recovered
depth map and 3D surfaces with two state-of-the-arts light field-based
methods [30] and [18].

sampling scheme provides more diverse lighting and viewpoint
samples, which allows for more robust shape and reflectance
reconstruction.

Finally, we analyze the performance of our approach with
respect to different numbers of cameras, light sources and image
noises. Theoretically, the minimal setup of CMSLF requires 5
multi-spectral light sources and 5 × 3 concentric camera array
(i.e., five camera rings and three cameras on each ring) for
recovering the surface shape and reflectance. In practice, more
multi-spectral light sources as well as cameras can help improve
the reconstruction accuracy. Therefore, we perform experiments
by changing CMSLF settings to understand the impact of number
of cameras and light sources. We use the sphere model with Type
III material as the reconstruction target. First, we fix the number
of multi-spectral light sources to 12 and change the number of
cameras on each circle from 4 to 16 to evaluate the system
performance. The reconstruction error line plots are shown in the

4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

4 6 8 10 12 14 16
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

D
ep

th
 e

rr
o
r

N
o
rm

al
 e

rr
o
r

5 6 7 8 9 10 11 12 13 14 15
0.1

0.2

0.3

0.4

0.5

0.6

Number of lights

R
ef

le
ct

en
ce

 e
rr

o
r

5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

Number of lights

N
o
rm

al
 e

rr
o
r

Number of cameras Number of cameras

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.25

0.3

0.35

0.4

R
ef

le
ct

en
ce

 e
rr

o
r

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
5

6

7

8

9

10

Level of noise Level of noise

N
o
rm

al
 e

rr
o
r

Fig. 8. Performance analysis with respect to the number of cameras,
light sources and image noise.

first row of Fig. 8. We can see that although both the depth and
normal errors decreases as the number of cameras increases, the
improvement becomes marginal when the number of cameras is
greater than 8 on each circle. We then fix the number of cameras
to 8 and vary the number of multi-spectral light sources from 5
to 15. The reconstruction error line plots are shown in the second
row of Fig. 8. We can see that the accuracy improvement becomes
marginal when the number of light sources is greater than 12.
Therefore we conclude that the optimal configuration for CMSLF
is to use 12 multi-spectral light sources and 8 cameras in each
circle. We use this configuration to build our real prototype system.
We also evaluate the performance with respect to image noise. We
add zero-mean Gaussian noise with different variances (0 ∼ 0.4)
to the input images. The reconstruction error line plots are shown
in the third row of Fig. 8. We can see that both the reflectance
and normal errors increases as the noise level goes up. The normal
estimation is more sensitive to noise than the reflectance.
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Fig. 9. (a) Our prototype concentric multi-spectral light field (CMSLF)
system; (b) The illumination spectra of our multi-spectral ring light
source; (c) Sample multi-spectral images captured with our CMSLF.

4.2 Real Experiments

We perform experiments on various real scenes using a CMSLF
system prototype.

4.2.1 System Configuration

We construct a CMSLF using customized hardware. Our prototype
system is shown in Fig. 9. To emulate the concentric multi-
spectral light field camera array with a single camera, we mount
a monochrome camera (Point Grey GS3-U3-51S5M-C) with a
50mm lens on a translation stage to move the camera to specific
positions on concentric circles on a 2D plane (i.e., the st plane).
Specifically, we emulate a 12 × 8 concentric camera array (i.e.,
12 circles with 8 cameras on each circle). We mount a tunable
liquid crystal spectral filter (KURIOS-WL1) in front of the camera
to capture the scene under specified wavelengths. The horizontal
field-of-view of the camera is 13◦ and the resolution of the
captured image is 2448 × 2048. According to the dimension of
our system, the optimal acquisition distance is to place the target
around 100cm away from our system.

To build the multi-spectral ring light, we mount twelve 30
Watt LED chips onto a dodecagon frame, the distance between
each LED chip and the center of the dodecagon is 50cm. We then
place 12 narrow-band spectral filters with wavelengths ranging
from 450 nm to 670 nm with step 20 nm in front of the LED
chips to emit multi-spectral illumination. We arrange the spectral
filters such that the shading variation along the illumination ring
for a fluctuated curve with respect to the wavelength, as shown
in Fig. 10. This is because we need to reduce the ambiguity on
reflectance and shading variation separation in Eqn. 15. When the
multi-spectral lights are arranged in this way, the surface normal
can be more easily converged to the global optimum.

4.2.2 System Calibration

We need to perform geometric and photometric calibration on
our system. Specifically, we calibrate the camera intrinsics and
extrinsics, the light sources’ 3D positions and spectral responses.
The reflectance basis functions and camera spectral response are
also pre-computed in the calibration process.
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Fig. 10. Our desired multi-spectral light source arrangement. The shad-
ing variation of the light sources with respect to the wavelength form a
fluctuated curve.

Estim
ated

G
round Truth

420 690
0

0.45

Wavelength(nm)

R
ef

le
ct

an
ce

0
420 690Wavelength(nm)

0.65

R
ef

le
ct

an
ce

420 690
0

0.85

Wavelength(nm)

R
ef

le
ct

an
ce

420 690
0

0.2

Wavelength(nm)

R
ef

le
ct

an
ce

0.15

0.6

420 690Wavelength(nm)

R
ef

le
ct

an
ce

0

0.35

420 690Wavelength(nm)

R
ef

le
ct

an
ce

0

0.9

420 690Wavelength(nm)

R
ef

le
ct

an
ce

Fig. 11. Evaluation of spectral calibration results. We perform spectral
calibration using standard colorchecker chart. We evaluation our cali-
bration results by comparing our estimated spectral response for the
color checker with the ground truth ones.

Camera Calibration. We first calibrate the camera intrinsic and
extrinsic parameters using traditional camera calibration method
[47]. The camera is then moved to specific positions on concentric
circles with a high-precision 2D translation stage.

Light Source Calibration. To calibrate the light source positions,
we first move the camera to the center of the concentric circle. For
each light source, we capture a sequence of images with a chrome
ball at different locations. In each image, we detect the specular
spot on the chrome ball as an incident point. We then compute
the incident ray direction using the reflection ray direction (i.e.,
the camera ray) and the surface normal. The light source position
can then be determined by backtracing all incident rays from the
image sequence to form an intersection point. Intuitively, this
procedure needs to be repeated for every light source. In practice,
we capture the images for all light source in one pass through
spectral-multiplexing.

Spectral Calibration. In this step, we calibrate the mixed spectral
response Wj = BjEjQj (where Ej is the light source’s spectral
response and Qj is the camera’s) by capturing images of the
standard colorchecker chart for each spectral light. As we know
the ground truth reflectance response of the color swatches, we
can apply PCA to extract the coefficient vector for each color and
combine them together to a coefficients matrix C = [c1; ...; c24]
with size 24×w (where 24 is the total number of color swatches),
we also can get the dense spectral reflectance basis B. For the jth
spectral light source, we adjust our tunable spectral filter in front
of the camera to capture the color checker only under its specific
spectrum. With the known checker position and the light position,
we can eliminate the shading term (Lj ·N)/‖Pj −X‖2. We then
average the intensities without shading components for each color



TABLE 1
Quantitative evaluation of multi-spectral reflectance estimation using the standard colorchecker chart in comparison with [6].

dark skin light skin blue sky foliage blue flower bluish green orange purple red moderate red purple yellow green orange yellow

Normal RMSE [6] 18.7◦ 21.3◦ 16◦ 27.4◦ 24.8◦ 28.3◦ 15.7◦ 20.8◦ 16.2◦ 9.54◦ 18.9◦ 30.4◦
Ours 3.79◦ 1.89◦ 2.74◦ 6.37◦ 2.16◦ 5.48◦ 4.29◦ 2.12◦ 6.61◦ 2.89◦ 8.69◦ 3.72◦

Reflectance RMSE [6] 0.328 0.097 0.129 0.340 0.261 0.365 0.152 0.179 0.130 0.212 0.280 0.293
Ours 0.0173 0.0187 0.0099 0.0188 0.0150 0.0212 0.0389 0.0299 0.0320 0.0183 0.0205 0.0416

blue green red yellow magenta cyan white neutral 8 neutral 65 neutral 5 neutral 35 black

Normal RMSE [6] 17.9◦ 41.2◦ 30.2◦ 15.9◦ 14.7◦ 20.6◦ 35.4◦ 22.4◦ 12.5◦ 15.6◦ 31.9◦ 41.6◦
Ours 1.76◦ 2.37◦ 2.08◦ 5.18◦ 1.40◦ 5.07◦ 8.32◦ 5.14◦ 1.32◦ 1.85◦ 2.56◦ 10.67◦

Reflectance RMSE [6] 0.204 0.562 0.300 0.269 0.227 0.324 0.454 0.273 0.197 0.203 0.291 0.375
Ours 0.0144 0.0092 0.0330 0.0134 0.0318 0.0216 0.0219 0.0229 0.0208 0.0066 0.0040 0.0047

Model Refined depth  Final recovered depthInitial depth  

Fig. 12. Depth maps from each step of our algorithm.

swatch to form a vector I ′j with size is 24× 1. We can solve Wj

by optimizing the following objective function:

argmin
Wj

(CWj − I ′j) (17)

We perform this optimization for all spectra and obtain W =
[W1, ...,Wm]. The spectral response EjQj can then be com-
puted from the calculated Wj with the known reflectance re-
sponses.

We evaluate our spectral calibration by comparing our es-
timated spectral responses for the colorchecker chart with the
ground truth ones. The results are shown in Fig. 11. From our
sample results, we can see that our spectral estimations are highly
accurate. The estimation accuracy is lower for the dark gray and
black checkers because their captured intensities are low resulting
in low signal-noise ratio in the capture images.

4.2.3 Results
Here we present real scene results using our CMSLF system.
We use our prototype CMSLF system to capture objects with
diverse reflectances, ranging from diffuse to highly specular. Our
shape and reflectance reconstruction results are shown in Fig. 13.
We can see that our approach works well for specular objects,
such as ceramic figurine and plastic toys. We also compare
our recovered 3D surfaces with state-of-the-arts light field-based
methods [18], [30] and photometric stereo-based methods [6],
[38], [39], [48]. The visual comparison results of the recovered
3D surfaces are shown in Fig. 14. Specifically, both light field-
based methods are expected to handle specularity well. Among the

photometric stereo-based methods, [48] and [6] are not designed
to recover non-Lambertian surfaces; [38] and [39] compensate the
corruption caused specularity with sparse solvers. We can see that
our approach outperforms all these methods. This shows that our
concentric mutli-spectral light field setting is advantageous.

To better understand our algorithm, we show the intermediate
depth estimation results from three examples in Fig. 12. The “ini-
tial depth” is the depth map initialized with the photo-consistency
constraint. As this constraint only works for diffuse points, we
can notice erroneous depth estimations for specular points. The
“refined depth” refers to the estimation that refines the depths for
specular points using the single-peak curve. We can notice obvious
improvement on specular points. The “final recovered depth” is
our final result after iterative refinement.

We also quantitatively evaluation our shape and multi-spectral
reflectance reconstruction using a standard color-checker chart.
We compare our method with the multi-spectral photometric
stereo [6]. The results are shown in Table 1. We can see that
both the normal errors and reflectance errors of our method are
significantly smaller.

5 CONCLUSIONS AND DISCUSSIONS

In summary, we have presented a concentric multi-spectral light
field (CMSLF) based method for surface shape and reflectance
reconstruction. We’ve shown that our concentric camera and light
source setting results in a unique single-peak pattern in specularity
variations across views. The pattern allows for robust depth
estimation for specular points. Through comprehensive synthetic
and real experiments, we show that our method can achieve highly
accurate and robust results for non-Lambertian surfaces.

However, our method has limitations in handling occlusions
and shadows. Our shape and reflectance reconstruction accuracy
will be degraded if a point is in shadow (see occluded regions in
the ceramic girl figurine scene in Fig. 13). One promising future
direction is to exploit characteristics of occluding boundaries in
our CMSLF and develop reconstruction algorithms that are robust
to occlusions. Our current prototype system is bulky and requires
moving the camera with a translational stage to simulate the
concentric light field. In the future, we plan to build a CMSLF
system using an array of cameras with spectral filters to realize
single-shot acquisition.
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Fig. 13. Real experiment results. From left to right, we show the input model images, recovered normal maps, the recovered normal maps, the
recovered 3D surfaces and the recovered reflectance images.
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Fig. 14. Visual comparison of recovered 3D surface with state-of-the-arts light field-based methods [18], [30] and photometric stereo-based methods
[6], [38], [39], [48].
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