Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field

Mingyuan Zhou, Yuqi Ding, Yu Ji, S. Susan Young, Jingyi Yu, and Jinwei Ye

Abstract—Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.

Index Terms—Shape Reconstruction, Surface Reflectance, Multi-Spectral, Light Field

1 INTRODUCTION

Surface shape and reflectance reconstruction from images is a fundamental problem in computer vision that can benefit numerous applications ranging from graphics rendering to scene understanding. Well-established solutions based on multi-view stereo [1], [2], [3] or photometric stereo [4], [5], [6], [7] often assume Lambertian surfaces, from which the light is equally reflected towards all directions. However, most real world objects have more complex reflectances that exhibit view-dependent characteristics (such as specular highlights). These surface violate the Lambertian assumption and result in erroneous depth and reflectance estimation.

In recent years, light field has emerged as a powerful tool in computer vision and graphics for 3D-related applications. A light field camera can be essentially viewed as a multi-view device. Notable examples include the hand-held light field camera [8] and the light field camera array [9]: the former combines a lenticular lens array and a single high-resolution sensor with each lenslet emulating a pinhole camera, while the latter uses multiple cameras in order to allow for wide baseline and large Field-of-View (FoV) acquisition. In both settings, the viewpoints are arranged on rectangular grids. Earlier uses of light field focused on refocused rendering [8], [10] and view interpolation [11]. More recent approaches have employed light field for 3D reconstruction [12], [13], [14]. To handle non-Lambertian reflectance, focus cues [15], angular coherence [16] and BRDF-invariants [17], [18] are proposed on light field data. However, additional surface priors such as smoothness or polynomial shape need to be imposed.

In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) array that arranges the cameras on concentric circles. As shown in Fig. 1, each circle of cameras captures images at the same specific spectrum. We show that by coupling with a multi-spectral ring light, our CMSLF is advantageous in surface shape and reflectance reconstruction. This is mainly because 1) through spectral multiplexing, we are able to simultaneously sample multiple viewpoints under varying lighting directions without interference; and 2) our concentric viewpoint arrangement results in a unique single-peak pattern in specularity variations across views that can be utilized for specularity analysis and thus enables robust depth estimation for non-Lambertian points.

Fig. 1. Left: our concentric multi-spectral light field (CMSLF) array. We arrange the cameras on concentric circles, where each circle has the same number of cameras that capture at the same specific spectrum. A multi-spectral ring light surrounding the cameras provides direction-varying illumination for each camera circle. Right: our reconstruction results. (a) scene photograph; (b) recovered normal map; (c) recovered 3D surface; and (d) recovered reflectance map.
We develop tailored algorithms based on our CMSLF design for surface shape and reflectance estimation. Specifically, we first formulate a dichromatic Phong reflectance model under CMSLF using the surface camera (S-Cam) representation [19]. An S-Cam models angular reflectance distribution with respect to a 3D scene point. It can be formed by tracing rays originated from the scene point back to the captured light field. By analyzing the reflectance model, we show that diffuse and specular surface points exhibit very different characteristics in S-Cam under our concentric viewpoint arrangement. Specifically, the specularity variations across views form a unique single-peak pattern which can enable robust depth estimation for specular points. For depth and reflectance estimation, we first initialize a depth map using multi-view stereo on S-Cams. We separate the diffuse and specular points by thresholding the intensity variance (because the diffuse points have constant intensity across views). We then rely on the single-peak pattern to refine the depths of specular points. Through our specularity analysis, we can subtract the specular components from the captured intensities to form specular-free S-Cams. We finally apply the photometric cues on the specular-free S-Cams to jointly estimate the surface normal and reflectance. We iterate these steps for refinement. We conduct extensive synthetic and real experiments to show that our approach is accurate and robust. We also show that our method outperforms state-of-the-art multi-view-based and photometric stereo-based methods in shape and reflectance reconstruction, especially for non-Lambertian surfaces.

2 Related Work

Our work is closely related to reflectance modeling and image-based surface shape and reflectance reconstruction.

Modeling surface reflectance is important to computer vision and graphics. The classical method in computer graphics uses the Lambertian model to characterize diffuse reflection and the Phong model for specular reflection. Although this method is not theoretically correct, it is still widely used and indispensable in computer graphics due to its simplicity in mathematical modeling. To characterize complex surface reflectance, the bidirectional reflectance distribution function (BRDF) [20] that measures the ratio between incident irradiance and exit radiance at a surface point is commonly used. The full BRDF model of a point requires a large parameter space as it exhausts all combinations of incident and exit lighting directions. A special case of the BRDF model is the dichromatic reflectance model, which was originally proposed by Shafer [20] to model dielectrics. It assumes that the BRDF of a surface can be decomposed into two additive components: the interface (specular) reflectance and the body (diffuse) reflectance. Since all wavelength variations can be factorized from the two components, it is well suited for modeling multi-spectral reflectance. In our multi-spectral specular analysis, we combine the dichromatic reflectance model with the classical Phong model to characterize the surface reflectance sampled by our CMSLF.

Recovering the surface shape and reflectance from images is a fundamental problem in computer vision. The most popular two classes of methods are multi-view photogrammetry [2], [21], [22], [23], [24], [25], [26] and photometric stereo [4], [5], [6], [7], [27], [28], [29]. The former ones recover the 3D shape by triangulating rays from multiple viewpoints while the latter perform reconstruction under a fixed viewpoint but with various lighting directions. Although great success has been achieved on diffuse surfaces, specular highlights pose great challenges as they violate the color consistency assumption. Some methods [15], [30], [31] consider specular highlights as outliers and try to remove them. Some [32], [33], [34] rely on geometric and color distribution priors to compensate for specular regions. A recent work by Mecca et al. [35], [36] separates specular points from pure Lambertian reflection and treat them differently. However, their approach needs to take many images (around ten) as input. Oxholm and Nishino [37] recover the shape and reflectance of the homogeneous surface from a single image captured under uncontrolled illumination. Fyffe et al. [6] use spectral multiplexing to perform single-shot photometric stereo. Ikeda et al. [38] and Wu et al. [39] use the sparse representations to solve photometric stereo to compensate the corruptions caused by specularity. Zuo et al. [40] estimate surface geometry and albedo from RGB-D videos. Chandraker [41], [42] explores the motion cue for recovering shape and reflectance of a homogeneous object under a single directional light source. Wang et al. [17] extend the similar motion cue to spatial-varying BRDF using light field. Li et al. [18] improve the optimization framework for shape estimation with BRDF-invariant features. In this work, we present a novel concentric multi-spectral light field that is advantageous for handling non-Lambertian scenes because the concentric setting results in a unique pattern in specularity variation.

3 Our Approach

In this section, we present our approach for surface shape and reflectance estimation using our concentric multi-spectral light field (CMSLF). We first present the system configuration (Section 3.1). We then formulate a physics-based reflectance model that characterize the CMSLF using the surface camera (S-Cam) (Section 3.2). Next, we perform a specularity analysis on our reflectance model and show that the specularity variations across views exhibit a unique single-peak pattern. We show that it is useful for the depth estimation for specular points (Section 3.3). Finally, we describe our shape and reflectance reconstruction algorithm for non-Lambertian surfaces (Section 3.4).

3.1 Concentric Multi-spectral Light Field

As shown in Fig. 1, our CMSLF acquisition system consists of multi-spectral cameras and light sources that are arranged on coplanar and concentric circles. Each circle has the same number of cameras which are uniformly spaced and capture the same specific spectrum. The surrounding multi-spectral ring light provides direction-varying illumination for each camera ring. It’s worth noting that we use narrowband spectral filters for all cameras and light sources. We can, therefore, simultaneously sample multiple viewpoints under varying lighting directions without interference via spectral multiplexing.

To parameterize the CMSLF, we adopt the classical two-plane parametrization (2PP) [11] light field representation. Since our cameras are on coplanar circles, we set the center-of-projection (CoP) plane as the st plane at z = 0 and the image plane as the uv plane at z = 1. We use st for camera indices and uv for pixels.

Assuming we have m concentric camera rings in total and n cameras on each ring in a CMSLF, the camera position on the st plane can be written as \((s(i,j), t(i,j)) = (r_j \cos \phi_i, r_j \sin \phi_i)\), where \(i \in \{1, \ldots, n\}\) is the camera index in each concentric ring; \(j \in \{1, \ldots, m\}\) is the ring index, \(m\) also is the total number of spectral samples; \(r_j\) is the radius of the jth camera ring; \(\phi_i = (i - 1) \frac{\pi}{k}\) is the spanned angle between the ith camera spoke and...
the x-axis ($\phi = 2\pi/n$ is the interval angle between neighboring camera spokes). The jth camera ring captures wavelength λ_j.

On the illumination side, since the lighting spectra match the ones sampled by the camera array, the number of point light sources equals to the number of camera rings (i.e., m). Assuming the light source ring is on a circle with radius r_j, the position of the jth light source in 3D can be written as $P_j = [r_j \cos \theta_j, r_j \sin \theta_j, 0]$ where $\theta_j = \theta_1 + (j - 1)\tilde{\phi}$ (θ_1 is the angular position of the first light source and $\tilde{\phi} = 2\pi/m$ is the angular interval between neighboring light sources).

We use the vector $P = [P_1; \ldots; P_m]$ to represent the set of all light source positions. Since we use narrowband spectral filters, the spectral illumination emitted from the jth point light source can only be received by the jth camera ring.

3.2 CMSLF Reflectance Model

We then formulate a physics-based reflectance model that characterizes the CMSLF using the surface camera (S-Cam) representation [19].

3.2.1 Dichromatic Phong Model

We adopt the Dichromatic Reflectance Model (DRM) [43] to model reflectance. DRM separates the surface reflectance into body reflectance and interface reflectance, both terms account for geometry and color. DRM is suitable for modeling inhomogeneous materials.

Given a light source with the spectral distribution $E(\lambda)$ where λ refers to the wavelength, and a camera with spectral response function $Q(\lambda)$, the observed image intensity I under DRM at pixel p can be formulated as:

$$I(p) = w_d(p) \int_{\lambda_1}^{\lambda_N} R(p, \lambda)E(p, \lambda)Q(\lambda)d\lambda + w_s(p) \int_{\lambda_1}^{\lambda_N} E(p, \lambda)Q(\lambda)d\lambda$$

(1)

where $[\lambda_1, \lambda_N]$ is the range of sampled wavelengths; $R(p, \lambda)$ is the surface reflectance; $w_d(p)$ and $w_s(p)$ are geometry-related scale factors. The first term in Eq. 1 represents body reflectance that models light reflection after interacting with the surface reflectance. The second term represents interface reflectance that models light immediately reflected from the surface and thus causing specularities.

We apply numerical integration with step $\tilde{\lambda}$ on Eqn. 1 which, after dropping pixel p becomes:

$$I = \textbf{J} \textbf{EQ} + w_s \textbf{JEQ}$$

(2)

where \textbf{J} is a row vector with all ones, $\textbf{R} = [R(\lambda_1), R(\lambda_1 + \tilde{\lambda}), \ldots, R(\lambda_N)]$, $\textbf{E} = \text{diag}(E(\lambda_1), E(\lambda_1 + \tilde{\lambda}), \ldots, E(\lambda_N))$ which is a diagonal matrix, and $\textbf{Q} = [Q(\lambda_1), Q(\lambda_1 + \tilde{\lambda}), \ldots, Q(\lambda_N)]^T$.

To take the scene geometry into consideration, we formulate the Phong dichromatic model that combines the classical Phong model with the DRM and assumes the near point lighting (NPL). Specifically, the diffuse and specular factors w_d and w_s are modeled with lighting position, viewing direction, surface normal and roughness. The image intensity I can then be written as:

$$I = k_d \left(\frac{L \cdot N}{\|P - X\|^2} \right)^\alpha \textbf{JEQ} + k_s \left(\frac{(D \cdot V)^\alpha}{\|P - X\|^2} \right) \textbf{JEQ}$$

(3)

where N is the surface normal at a 3D point X; P is the position of light source; $L = (P - X)/\|P - X\|$ is the normalized lighting direction; V is the viewing direction; $D = 2(L \cdot N)N - L$ is the reflection direction; α is the shininess parameter that models the surface roughness; k_d and k_s refer to the diffuse and specular surface reflectivity.

3.2.2 Multi-spectral Surface Camera (MSS-Cam)

Next, we apply the Phong dichromatic reflectance model on our CMSLF using the Surface Camera (S-Cam) [19]. S-Cam characterizes the angular sampling characteristics of a light field. Given a 3D scene point, its S-Cam can be synthesized by tracing rays originated from the scene point into the light field to fetch color (see Fig. 2).

After applying the S-Cam on our CMSLF, we obtain the multi-spectral S-Cam (MSS-Cam). We now present the MSS-Cam image formation using our dichromatic Phong model. Given a pixel (u, v) in the center camera view with position $(x, t) = (0, 0)$, and assuming its corresponding 3D scene point is $X(u, v, z) = (x, y, z)$, we can synthesize its MSS-Cam M_X from the captured multi-spectral light field images. The pixels in a column of M_X are taken from cameras on the same ring that is sampled under a specific spectrum according to our concentric camera/light source arrangement. Moreover, each column captures the specular variation with respect to a single light source for non-Lambertian points. The pixels in the same row of M_X are taken from cameras on different rings but at the same camera spanned angle. To obtain MSS-Cam, we trace rays from the point X to each camera in the CMSLF. For a pixel (i, j) in the M_X, it samples the ray from the camera at $(s(i, j), t(i, j))$. By applying Eqn. 3, we can write the intensity at an MSS-Cam pixel $M_X(i, j)$ as:

$$M_X(i, j) = k_d \left(\frac{L_{ij} \cdot N}{\|P_j - X\|^2} \right)^\alpha c_{B_j} c_{E_j} Q_j + k_s \left(\frac{(D_{ij} \cdot V_{ij})^\alpha}{\|P_j - X\|^2} \right) c_{E_j} Q_j$$

(4)
where $V_{i,j}$ is the viewing direction from the X to the camera $(s(i,j), t(i,j))$; D_j is the reflection direction of L_j; $cB_j = R$ indicates the linear decomposition of the reflectance spectra R, with $c = [c_1, ..., c_w]$ as the reflectance coefficient vector and B_j as a $w \times h$ linear reflectance basis matrix under the spectral range $[\lambda_j - \frac{(h-1)\lambda}{2}, \lambda_j + \frac{(h-1)\lambda}{2}]$. E_j and Q_j have the same spectral range and are with sizes $h \times h$ and $h \times 1$ respectively.

3.3 Specularity Analysis

We now perform a specularity analysis on MSS-Cam and show that the specularity variation across views exhibits a unique single-peak pattern that is useful for specular region depth estimation.

We first separate the diffuse and specular points by thresholding the intensity variance because the diffuse points have constant reflectance across views. Fig. 2 shows that the MSS-Cam sampled at the correct scene depth exhibits photo consistency for ideal diffuse points (same intensities for pixels at the same column) and smooth intensity variations for specular points. If MSS-Cam is sampled at an incorrect depth, rays are integrated from different surface points. This results in random fluctuation of intensities in the MSS-Cam. The photo consistency for diffuse points in an MSS-Cam image M_X can be formulated as:

$$C(M_X) = \frac{1}{m} \sum_{j=1}^{m} \text{std}(M_X(1,j), ..., M_X(n,j))$$

where $\text{std}(\cdot)$ is the standard deviation function. This function indicates that the standard deviation for pixels taken from the same column should be very close to 0 if the point is diffuse and the MSS-Cam M_X is sampled at the correct depth. We therefore set a threshold on $C(M_X)$ to separate diffuse and specular points.

For specular points, we show that the specularity variation across views exhibits a unique single-peak pattern because of the concentric configuration of cameras. Intuitively, as shown in Fig. 3 (a), the cone-shaped lighting directions result in a reflection cone that is symmetric to the normal. Since the light field camera sampling for each spectrum is on a circle, the intensities from each column of the MSS-Cam will be changing on a sinusoidal curve with the camera’s sampling angle ϕ from 0 to 2π in the circle (see Fig. 3 (b)). Below we formalize this property as a proposition and provide its proof.

Proposition 1. The specularity variation along the column of a MSS-Cam always forms a single-peak function.

Proof. For simplification, we consider a specular point in 3D, $X = [0, 0, z]$, with the surface normal N. Its MSS-Cam M_X sampled at the correct scene depth can be formulated by applying Eqn. 4. Now we analyze the intensity variation along the jth column of its MSS-Cam under the sepcetral light source at $P_j = [r_j \cos \theta_j, r_j \sin \theta_j, 0]$. Assuming the normalized lighting direction is L, and the reflection direction w.r.t. the surface normal is $D = [d_x, d_y, d_z]$. The camera position from the camera ring is $[r_j \cos \phi, r_j \sin \phi, 0]$. The viewing direction can be computed as $V = [r_j \cos \phi, r_j \sin \phi, -z]/\sqrt{r_j^2 + z^2}$. The diffuse component and the term $k_j \mathbf{J}_j \mathbf{E}_j \mathbf{Q}_j / ||P_j - X||^2$ in the specular component in Eqn. 4 are constants c_d and c_s along the jth column of the MSS-Cam, therefore, the intensity along the jth column of the MSS-Cam can be rewritten as:

$$I(\phi) = c_d + c_s (D \cdot V)^\alpha$$

$$= c_d + c_s \left(\frac{c_x}{(r_j^2 + z^2)^2} (r_j d_x \cos \phi + r_j d_y \sin \phi - zd_z)^\alpha
ight)$$

$$= c_d + c_s \frac{c_x}{(r_j^2 + z^2)^2} (c_v \sin(\phi + \tilde{\phi}) - zd_z)^\alpha$$

where

$$c_v = \sqrt{(r_j d_x^2 + (r_j d_y)^2)}$$

$$\sin \tilde{\phi} = \frac{d_x}{\sqrt{d_x^2 + d_y^2}}, \quad \cos \tilde{\phi} = \frac{d_y}{\sqrt{d_x^2 + d_y^2}}$$

The terms c_d and $c_s/(r_j^2 + z^2)^2$ are constants along each column of the MSS-Cam. Therefore we can see that the intensity variation along a column of the MSS-Cam is an exponential sinusoidal curve w.r.t. the camera’s angle ϕ in the ring, which is a single-peak function in the interval of $[0, 2\pi]$.

Notice that this proposition will not be affected by the arrangement of multi-spectral light sources. The spectral arrangement results in different shape of the curve because it changes the column ordering, but curve always remains one period of a sinusoid. Further, since the $\sin^\alpha(\cdot)$ can be expanded as the Fourier series, we can approximate Eqn. 6 as a Fourier series w.r.t. the camera’s angle ϕ in the ring as:

$$I(\phi) \approx F(\phi) = a_0 + \sum_p a_p \cos p\phi + \sum_p b_p \sin p\phi$$

where
We therefore fit a set of Fourier series F_1, \ldots, F_m to model intensity variation of specular point per column in the M_X. On the other hand, as is shown in Fig. 3 (b) and (e), by taking the camera spanned angles corresponding to the peaks from each specularity curve, we can form a similar sinusoidal curve. We then fit another Fourier series F_0 to represent this curve of peak camera angles. Therefore, if a point is specular, its intensity in MSS-Cam should follow the consistency measurement below:

$$S(M_X) = \frac{1}{m} \sum_{j=1}^{m} ||U(j) - F(j)|| + ||\Phi - F(0)|| \tag{8}$$

where $U(j) = [M_X(1,j), \ldots, M_X(n,j)]$ are MSS-Cam pixels from the same column, $F(j) = [F_j(\phi_1), \ldots, F_j(\phi_m)]$ is the fitted Fourier series for this column. $\Phi = [\phi_1, \ldots, \phi_m]$ are camera spanned angles corresponding to the peaks from each column, and $F(0) = [F_0(1), \ldots, F_0(m)]$ is the Fourier series fitted for them.

3.4 Shape and Reflectance Reconstruction

Finally, we show how to apply the CMSLF reflectance model and the specularity analysis on MSS-Cam for robust surface shape and reflectance reconstruction. Our reconstruction pipeline is shown in Fig. 4.

Depth Initialization. Given a pixel (u, v) and its corresponding 3D point $X(u, v, z)$ in the virtual center view at $[0, 0, 0]$. We first apply our photo-consistency measurement on the MSS-Cams with every hypothetical depth z of X to initialize its depth as:

$$z' = \text{argmin}_z C(M_X) \tag{9}$$

We classify this point as diffuse or specular point by thresholding the intensity variance across views. If a point is non-Lambertian, we use Eqn. 8 refine its depth as:

$$z' = \text{argmin}_z S(M_X) \tag{10}$$

Note that we only perform Fourier series fitting for non-Lambertian points because this process is time consuming and applying it for all pixels would be inefficient.

Specular Component Subtraction. For non-Lambertian point, given its initial depth, we retrieve its MSS-Cam and then subtract the specular component to obtain a specular-free MSS-Cam. Specifically, we first compute the vertical gradients of the MSS-Cam to remove the diffuse component in Eqn. 4 as:

$$\nabla M_X(i,j) = \left(M_X(i+1,j) - M_X(i,j) \right)$$

By rearranging Eqn. 11, we have:

$$G_X(i,j) = \nabla M_X(i,j) \| P_j - X \|^2 \tag{12}$$

where $G_X(i,j) = k_s((D_j \cdot V_{i+1,j})^\alpha - (D_j \cdot V_{i,j})^\alpha)$.

Normal and Reflectance Refinement.

Finally, we apply multi-spectral photometric stereo on our specular-free MSS-Cam to obtain more accurate surface normal and reflectance. Our objective function is formulated as:

$$\text{argmin}_{N,\alpha,k_s} \sum_{i,j} ||\tilde{G}_X(i,j) - k_s((D_j \cdot V_{i+1,j})^\alpha - (D_j \cdot V_{i,j})^\alpha)||$$

where $D_j = 2(L_j \cdot N) - L_j$. As this optimization is non-linear, we can apply the Levenberg-Marquardt method to solve the specular parameters that satisfy the specularity gradient variations.

Given these specular parameters, we can then subtract the specular components from our MSS-Cam and form a specular-free MSS-Cam A_X as:

$$A_X(i,j) = M_X(i,j) - k_s((D_j \cdot V_{i+1,j})^\alpha)\frac{(D_j \cdot V_{i,j})^\alpha}{\|P_j - X\|^2} \tag{14}$$

We form a row vector $A_X = [\text{median}(A_X(:,1)), \ldots, \text{median}(A_X(:,m))]$ by taking the median values from each column of A_X.

The surface normal and reflectance coefficients can be directly derived from b. Otherwise, when $w \times 3 > m$, we apply the Levenberg-Marquardt algorithm to solve Eqn 15.

After recovering the surface normal, we update the depth estimation through normal integration. We then re-compute all
MSS-Cams with the updated depths and repeat the above steps to iteratively refine the shape and reflectance estimation.

For multi-spectral reflectance estimation, we fit a dense multi-spectral reflectance $R = c'B$ using the estimated reflectance coefficients c'. B are the dense spectral sampling reflectance basis functions determined on the Munsell color sets [44], [45].

4 Experiments

In this section, we present synthetic and real experimental results to evaluate our approach. All experiments are performed on a desktop computer with Intel i7 7820 CPU (2.9GHz Quad-core) and 32G memory. Our algorithm is implemented in Matlab. Although we are able to recover multi-spectral reflectance, we still show the reflectance maps in RGB for the ease of visualization.

4.1 Synthetic Experiments

To simulate our CMSLF images, we implement a multi-spectral renderer to generate the input images. We consider the same camera and light source setup as used in our real experiments (described in Section 4.2.1). To simulate multi-spectral reflectance from RGB textures, we use high-dimensional reflectance linear (described in Section 4.2.1). To simulate multi-spectral reflectance, we consider the same camera and light source setup as used in our real experiments. We implement a multi-spectral renderer to generate the input images. We use the same camera and light source setup as used in our real experiments (described in Section 4.2.1). To simulate multi-spectral reflectance from RGB textures, we use high-dimensional reflectance linear basis to fit the missing spectra.

We first work on a simple sphere object with three different types of reflectance: ideal diffuse (Type I), specular (Type II) and specular with texture (Type III) (see Fig. 5). Through this experiment, we show that our approach can be applied to a variety of surface materials. In the material setting, the diffuse coefficients are all set to 0.7; the specular coefficients for each material are set to 0, 0.3, and 0.5 for Types I to III respectively; and the roughness for Type II/III is set to 10. The radius of the sphere is set to 20 units and the distance between the CMSLF and sphere is 120 units. As for our CMSLF, the radius of our ring light source is 80 units and contains 12 spectral light sources. We use a 12×8 concentric camera array (i.e., 12 circles with 8 cameras on each circle). The radius of the concentric camera circles ranges from 29 to 40 units with interval 1 unit for each circle in between. We consider spectral samples between wavelength 440 nm to 660 nm with interval 20 nm for both cameras and light sources. For each camera, we simulate image of the object at resolution 320 \times 320. For depth estimation, we discretize the depth values from 108 to 125 units with step 0.2. Our sphere has 76 depth layers. We apply our algorithm described in Section 3.4 to recover the shape and reflectance for the three types of sphere. Our reconstruction results are shown in Fig. 5. To evaluate our shape reconstruction, we compare our recovered normal maps with the ground truth ones and compute the error maps. The maximum normal error is less than 2\degree for all three cases. To evaluate the reflectance reconstruction, we plot the multi-spectral reflectance curve for a randomly sampled point on each sphere in comparison with the ground truth reflectance curve.

Next, we perform synthetic experiments on two objects with more complex geometries, a Buddha head (or buddha) and an antique pendant plate (or plate). For these experiments, our light source setting and spectral sampling scheme are the same as the sphere object experiment. For the CMSLF, the radius of the camera circles range from 4 to 2.9 with step 0.1. Each camera renders images at a higher resolution (500 \times 500) to capture the fine details of the objects. For surface material, we set the specular coefficients to 0.6 (buddha) and 0.4 (plate). The roughness is set to 20 for both. The distances between objects and camera are 41 (buddha) and 34 (plate). We discretize the depth values in the range from 35 to 42 with step 0.1 for the buddha and from 33 to 35 with step 0.1 for the plate. Our shape and reflectance reconstruction results are shown in Fig. 6. We evaluate our shape reconstruction in terms of normal errors and we can see that the maximum normal error is less than 3\degree for both objects. We also show our recovered 3D surfaces. We can see that the geometric details are well preserved. We re-render the diffuse images to show that our recovered reflectance is highly accurate.

We compare our shape reconstruction with two state-of-the-art light field-based depth estimation methods [30] and [18]. Tao et al. [30] use specular properties in the epipolar plane images (EPI) to recover glossy surfaces with light field. Li et al. [18] develop an optimization framework to recover the shape and reflectance for surfaces with spatial varying BRDF. Both methods are expected to handle non-Lambertian surfaces well. We render 12 \times 12 grid-based light field images and use them as input to the two methods. We use the source codes provided by the authors for testing. The comparison results on buddha is shown in Fig. 7. We can see that our recovered 3D surfaces are with higher quality. This is mainly because of two reasons: 1) our concentric circular light field setting provide addition photometric cues for non-Lambertian points depth estimation; and 2) our multi-spectral
Fig. 6. Synthetic results for the buddha and plate. From left to right, we show the input model images, recovered normal maps, the error maps of normal estimation in degree, the recovered 3D surfaces and the recovered reflectance images.

Fig. 7. Comparison results on synthetic data. We compare the recovered depth map and 3D surfaces with two state-of-the-arts light field-based methods [30] and [18].

Fig. 8. Performance analysis with respect to the number of cameras, light sources and image noise.

sampling scheme provides more diverse lighting and viewpoint samples, which allows for more robust shape and reflectance reconstruction.

Finally, we analyze the performance of our approach with respect to different numbers of cameras, light sources and image noises. Theoretically, the minimal setup of CMSLF requires 5 multi-spectral light sources and 5 × 3 concentric camera array (i.e., five camera rings and three cameras on each ring) for recovering the surface shape and reflectance. In practice, more multi-spectral light sources as well as cameras can help improve the reconstruction accuracy. Therefore, we perform experiments by changing CMSLF settings to understand the impact of number of cameras and light sources. We use the sphere model with Type III material as the reconstruction target. First, we fix the number of multi-spectral light sources to 12 and change the number of cameras on each circle from 4 to 16 to evaluate the system performance. The reconstruction error line plots are shown in the first row of Fig. 8. We can see that although both the depth and normal errors decreases as the number of cameras increases, the improvement becomes marginal when the number of cameras is greater than 8 on each circle. We then fix the number of cameras to 8 and vary the number of multi-spectral light sources from 5 to 15. The reconstruction error line plots are shown in the second row of Fig. 8. We can see that the accuracy improvement becomes marginal when the number of light sources is greater than 12. Therefore we conclude that the optimal configuration for CMSLF is to use 12 multi-spectral light sources and 8 cameras in each circle. We use this configuration to build our real prototype system. We also evaluate the performance with respect to image noise. We add zero-mean Gaussian noise with different variances (0 ∼ 0.4) to the input images. The reconstruction error line plots are shown in the third row of Fig. 8. We can see that both the reflectance and normal errors increases as the noise level goes up. The normal estimation is more sensitive to noise than the reflectance.
4.2 Real Experiments

We perform experiments on various real scenes using a CMSLF system prototype.

4.2.1 System Configuration

We construct a CMSLF using customized hardware. Our prototype system is shown in Fig. 9. To emulate the concentric multi-spectral light field camera array with a single camera, we mount a monochrome camera (Point Grey GS3-U3-51S5M-C) with a 50mm lens on a translation stage to move the camera to specific positions on concentric circles on a 2D plane (i.e., the st plane). Specifically, we emulate a 12×8 concentric camera array (i.e., 12 circles with 8 cameras on each circle). We mount a tunable liquid crystal spectral filter (KURIOS-WL1) in front of the camera to capture the scene under specified wavelengths. The horizontal field-of-view of the camera is 13° and the resolution of the captured image is 2448×2048. According to the dimension of our system, the optimal acquisition distance is to place the target around 100cm away from our system.

To build the multi-spectral ring light, we mount twelve 30 Watt LED chips onto a dodecagon frame, the distance between each LED chip and the center of the dodecagon is 50cm. We then place 12 narrow-band spectral filters with wavelengths ranging from 450 nm to 670 nm with step 20 nm in front of the LED chips to emit multi-spectral illumination. We arrange the spectral filters such that the shading variation along the illumination ring for a fluctuated curve with respect to the wavelength, as shown in Fig. 10. This is because we need to reduce the ambiguity on reflectance and shading variation separation in Eqn. 15. When the multi-spectral lights are arranged in this way, the surface normal can be more easily converged to the global optimum.

4.2.2 System Calibration

We need to perform geometric and photometric calibration on our system. Specifically, we calibrate the camera intrinsic and extrinsics, the light sources’ 3D positions and spectral responses. The reflectance basis functions and camera spectral response are also pre-computed in the calibration process.

Camera Calibration. We first calibrate the camera intrinsic and extrinsic parameters using traditional camera calibration method [47]. The camera is then moved to specific positions on concentric circles with a high-precision 2D translation stage.

Light Source Calibration. To calibrate the light source positions, we first move the camera to the center of the concentric circle. For each light source, we capture a sequence of images with a chrome ball at different locations. In each image, we detect the specular spot on the chrome ball as an incident point. We then compute the incident ray direction using the reflection ray direction (i.e., the camera ray) and the surface normal. The light source position can then be determined by backtracing all incident rays from the image sequence to form an intersection point. Intuitively, this procedure needs to be repeated for every light source. In practice, we capture the images for all light source in one pass through spectral-multiplexing.

Spectral Calibration. In this step, we calibrate the mixed spectral response $W_j = B_jE_jQ_j$ (where E_j is the light source’s spectral response and Q_j is the camera’s) by capturing images of the standard colorchecker chart for each spectral light. As we know the ground truth reflectance response of the color swatches, we can apply PCA to extract the coefficient vector for each color and combine them together to a coefficients matrix $C = [c_1; \ldots; c_{24}]$ with size $24 \times w$ (where 24 is the total number of color swatches), we also can get the dense spectral reflectance basis B. For the jth spectral light source, we adjust our tunable spectral filter in front of the camera to capture the color checker only under its specific wavelength. The horizontal field-of-view of the camera is 2448×2048. According to the dimension of our system, the optimal acquisition distance is to place the target around 100cm away from our system.

Fig. 9. (a) Our prototype concentric multi-spectral light field (CMSLF) system; (b) The illumination spectra of our multi-spectral ring light source; (c) Sample multi-spectral images captured with our CMSLF.
Table 1
Quantitative evaluation of multi-spectral reflectance estimation using the standard colorchecker chart in comparison with [6].

<table>
<thead>
<tr>
<th></th>
<th>Normal RMSE</th>
<th>Reflectance RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ours</td>
<td>[6]</td>
</tr>
<tr>
<td>dark skin</td>
<td>3.79°</td>
<td>0.328</td>
</tr>
<tr>
<td>gray skin</td>
<td>2.13°</td>
<td>0.090</td>
</tr>
<tr>
<td>blue sky</td>
<td>6.37°</td>
<td>0.129</td>
</tr>
<tr>
<td>foliage</td>
<td>2.64°</td>
<td>0.340</td>
</tr>
<tr>
<td>vanilla</td>
<td>6.61°</td>
<td>0.0212</td>
</tr>
<tr>
<td>orange</td>
<td>4.09°</td>
<td>0.152</td>
</tr>
<tr>
<td>purple red</td>
<td>2.12°</td>
<td>0.179</td>
</tr>
<tr>
<td>purple</td>
<td>9.54°</td>
<td>0.130</td>
</tr>
<tr>
<td>red green</td>
<td>14.9°</td>
<td>0.212</td>
</tr>
<tr>
<td>cyan green</td>
<td>15.2°</td>
<td>0.280</td>
</tr>
<tr>
<td>yellow</td>
<td>6.65°</td>
<td>0.293</td>
</tr>
<tr>
<td>pink</td>
<td>6.2°</td>
<td>0.0187</td>
</tr>
<tr>
<td>neutral</td>
<td>0.0150</td>
<td>0.0299</td>
</tr>
<tr>
<td>white</td>
<td>0.0188</td>
<td>0.0320</td>
</tr>
<tr>
<td>gray</td>
<td>0.0212</td>
<td>0.0389</td>
</tr>
<tr>
<td>black</td>
<td>0.0202</td>
<td>0.0416</td>
</tr>
</tbody>
</table>

Average:
Normal RMSE: 3.0°
Reflectance RMSE: 0.29°

Fig. 12. Depth maps from each step of our algorithm.

We also quantitatively evaluate our shape and multi-spectral reflectance reconstruction using a standard color-checker chart. We compare our method with the multi-spectral photometric stereo [6]. The results are shown in Table 1. We can see that both the normal errors and reflectance errors of our method are significantly smaller.

5 Conclusions and Discussions

In summary, we have presented a concentric multi-spectral light field (CMSLF) based method for surface shape and reflectance reconstruction. We've shown that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across views. The pattern allows for robust depth estimation for specular points. Through comprehensive synthetic and real experiments, we show that our method can achieve highly accurate and robust results for non-Lambertian surfaces.

However, our method has limitations in handling occlusions and shadows. Our shape and reflectance reconstruction accuracy will be degraded if a point is in shadow (see occluded regions in the ceramic girl figurine scene in Fig. 13). One promising future direction is to exploit characteristics of occluding boundaries in our CMSLF and develop reconstruction algorithms that are robust to occlusions. Our current prototype system is bulky and requires moving the camera with a translational stage to simulate the concentric light field. In the future, we plan to build a CMSLF system using an array of cameras with spectral filters to realize single-shot acquisition.

Acknowledgment

This work was partially supported by the Louisiana Board of Regents under Grant LEQSF(2018-21)-RD-A-10.
Fig. 13. Real experiment results. From left to right, we show the input model images, recovered normal maps, the recovered normal maps, the recovered 3D surfaces and the recovered reflectance images.

Fig. 14. Visual comparison of recovered 3D surface with state-of-the-arts light field-based methods [18], [30] and photometric stereo-based methods [6], [38], [39], [48].
References

Mingyuan Zhou received his Ph.D. in computer science from University of Delaware in 2019. He received his M.E. degree in Computer Engineering from Stevens Institute of Technology in 2014, and B.E. degree in Intelligence Science and Technology from Beijing Information Science and Technology University, China, in 2011. He is now a research scientist at DGene. His research interests include computer vision and computational photography.

Yuqi Ding received his M.S. and B.S. degree in Geographical Information System from Wuhan University in 2013 and 2009. He is now a Ph.D. student at the Division of Computer Science and Engineering at Louisiana State University. His research interests include computational photography, computer vision, and computer graphics.

Yu Ji received his PhD degree in computer science from the University of Delaware in 2014. He received his M.Sc. in digital media from Nanyang Technological University in 2011 and Bachelor degree in Electrical Engineering from Huazhong University of Science and Technology in 2009. He is now a principal scientist at DGene Digital Media. His research interests include computational photography, computer vision, and computer graphics.

S. Susan Young (S95M97SM05) received the B.S. and M.S. degrees from the South China University of Technology, Guangzhou, China, and the Ph.D. degree from the State University of New York at Buffalo, Amherst, all in electrical and computer engineering, in 1984, 1987, and 1995, respectively. She joined as a Research Associate with the Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, in 1995, where she was involved in research on medical imaging problems for radiation therapy. From 1996 to 2002, she was a Senior Research Scientist with the Health Imaging Research Laboratory, Eastman Kodak Company, Rochester, NY, where she was engaged in multiresolution object recognition and image analysis on medical images, and medical image compression. Since 2002, she has been with the U.S. Army Research Laboratory, Adelphi, MD, researching automatic target recognition, image processing technology for various army weapon applications, thermal modeling and perception, and biometric recognition. She has co-authored a textbook Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008). She has authored or co-authored over 70 papers in reputable journals and conferences. She holds eleven patents for inventions on medical diagnostic imaging, image compression, image enhancement, pattern analysis, image super-resolution and biometric recognition. Dr. Young is an Associate Editor of Applied Optics. She is a recipient of 2007 and 2012 U.S. Army Research and Development Achievement Awards.

Jingyi Yu is currently Professor and Executive Dean of the School of Information Science and Technology at the ShanghaiTech University. He is also affiliated with the Department of Computer and Information Sciences at University of Delaware. He received B.S. from Caltech in 2000 and Ph.D. from MIT in 2005. He has published over 120 papers at highly refereed conferences and journals, and holds over 10 international patents on computational imaging. His research interests span a range of topics in computer vision and computer graphics, especially on computational photography and non-conventional optics and camera designs. He is a recipient of the NSF CAREER Award and the AFOSR YIP Award, and has served as an area chair of many international conferences including CVPR, ICCV, ECCV, IICP, and NIPS. He is currently an Associate Editor of IEEE TPAMI, IEEE TIP, and Elsevier CVIU, and will be program chair of ICIPR 2020 and IEEE CVPR 2021.

Jinwei Ye is an assistant professor in the Division of Computer Science and Engineering at Louisiana State University (LSU). She received her Ph.D. from the University of Delaware in 2014 and B.Eng. in Electrical Engineering from Huazhong University of Science and Technology in 2009. Before joining LSU, she worked as a researcher in the US Army Research Laboratory (ARL) and Canon U.S.A., Inc. Her research interests include computational photography, computer vision, and computer graphics.