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Abstract. Particle Imaging Velocimetry (PIV) estimates the fluid flow
by analyzing the motion of injected particles. The problem is challeng-
ing as the particles lie at different depths but have similar appearances.
Tracking a large number of moving particles is particularly difficult due
to the heavy occlusion. In this paper, we present a PIV solution that uses
a compact lenslet-based light field camera to track dense particles float-
ing in the fluid and reconstruct the 3D fluid flow. We exploit the focal
symmetry property in the light field focal stacks for recovering the depths
of similar-looking particles. We further develop a motion-constrained op-
tical flow estimation algorithm by enforcing the local motion rigidity and
the Navier-Stoke fluid constraint. Finally, the estimated particle motion
trajectory is used to visualize the 3D fluid flow. Comprehensive experi-
ments on both synthetic and real data show that using a compact light
field camera, our technique can recover dense and accurate 3D fluid flow.

Keywords: volumetric flow reconstruction, particle imaging velocime-
try (PIV), light field imaging, focal stack

1 Introduction

Recovering time-varying volumetric 3D fluid flow is a challenging problem. Suc-
cessful solutions can benefit applications in many science and engineering fields,
including oceanology, geophysics, biology, mechanical and environmental engi-
neering. In experimental fluid dynamics, a standard methodology for measuring
fluid flow is called Particle Imaging Velocimetry (PIV) [1]: the fluid is seeded
with tracer particles, whose motions are assumed to follow the fluid dynamics
faithfully, then the particles are tracked over time and their motion trajectories
in 3D are used to represent the fluid flows.

Although being highly accurate, existing PIV solutions usually require com-
plex and expensive equipment and the setups end up bulky. For example, stan-
dard laser-based PIV methods [16, 6] use ultra high speed laser beam to illumi-
nate particles in order to track their motions. One limitation of these method is
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that the measured motion field only contains 2D in-plane movement restricted
on the 2D fluid slice being scanned, as the laser beam can only scan one depth
layer at a time. To fully characterize the fluid, it is necessary to recover the
3D flow motion within the entire fluid volume. Three-dimensional PIV such as
tomographic PIV (Tomo-PIV) [9] use multiple cameras to capture the particles
and resolve their depths in 3D using multi-view stereo. But such multi-camera
systems need to be well calibrated and fully synchronized. More recently, the
Rainbow PIV solutions [47, 46] use color to encode particles at different depths
in order to recover the 3D fluid flow. However, this setup requires specialized illu-
mination source with diffractive optics for color-encoding and the optical system
needs to be precisely aligned.

In this paper, we present a flexible and low-cost 3D PIV solution that only
uses one compact lenslet-based light field camera as the acquisition device. A
light field camera, in essence, is a single-shot, multi-view imaging device [33].
The captured light field records 4D spatial and angular light rays scattered
from the tracer particles. As commercial light field cameras (e.g. Lytro Illum
and Raytrix R42) can capture high resolution light field, we are able to resolve
dense particles in 3D fluid volume. Small baseline of the lenslet array further
helps recover subtle particle motions at sub-pixel level. In particular, our method
benefits from the post-capture refocusing capability of light field. We use the
focal stack to establish correspondences among particles at different depths. To
resolve heavily occluded particles, we exploit the focal stack symmetry (i.e.,
intensities are symmetric in the focal stack around the ground truth disparity
[25, 41]) for accurate particle 3D reconstruction.

Given the 3D locations of particles at each time frame, we develop a physics-
based optical flow estimation algorithm to recover the particle’s 3D velocity field,
which represents the 3D fluid flows. In particular, we introduce two new regu-
larization terms to refine the classic variational optical flow [17]: 1) one-to-one
particle correspondence term to maintain smooth and consistent flow motions
across different time frames; and 2) divergence-free regularization term derived
from the Navier-Stoke Equations to enforce the physical properties of incom-
pressible fluid. These terms help resolve ambiguities in particle matching caused
by similar appearances while enforcing the reconstruction to obey physical laws.
Through synthetic and real experiments, we show that using a simple single cam-
era setup, our approach outperforms state-of-the-art PIV solutions on recovering
volumetric 3D fluid flows of various types.

2 Related Work

In computer vision and graphics, much effort has been made in modeling and
recovering transparent objects or phenomena directly from images (e.g., fluid
[32, 49], gas flows [20, 4, 28, 48], smoke [12, 14], and flames [13, 19], etc.). As these
objects do not have their own appearances, often a known pattern is assumed
and the light paths traveled through the transparent medium are estimated for
3D reconstruction. A comprehensive survey can be found in [18]. However, many
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of these imaging techniques are designed to recover the 3D density field, which
does not explicitly reveal the internal flow motion.

Our method, instead, aims at estimating the 3D flow motion in terms of
velocity field. The measurement procedure is similar to the Particle Imaging Ve-
locimetry (PIV) method that estimates flow motion from movement by injecting
tracer particles. Traditional PIV [16, 6] recovers 2D velocity fields on thin fluid
slices using high speed laser scanning. As 3D volumetric flow is critical to fully
characterize the fluid behavior, recovering a 3D velocity field within the entire
volume is of great interest.

To recover 3D velocity field of a dense set of particles, stereoscopic cameras
[3, 35] are used to estimate the particle depth. Tomographic PIV (Tomo-PIV) [9,
36, 22] use multiple (usually three to six) cameras to determine 3D particle loca-
tions by space carving. Aguirre-Pablo et al. [2] perform Tomo-PIV using mobile
devices. However, the accuracy of reconstruction is compromised due to the low
resolution of mobile cameras. Other notable 3D PIV approaches include defo-
cusing PIV [45, 21], Holographic PIV [50, 39], and synthetic aperture PIV [5, 31].
All these systems use an array of cameras for acquisition and each measurement
requires elaborate calibration and synchronization. In contrast, our setup is more
flexible by using a single compact light field camera. Recently proposed rainbow
PIV [46, 47] use color-coded illumination to recover depth from a single camera.
However, both the light source and camera are customized with special optical
elements and only sparse set of particles can be resolved. Proof-of-concept simu-
lations [27] and experiments [10] using compact light field or plenoptic cameras
for PIV have been performed and showed efficacy. However, the depth estimation
and particle tracking algorithms used in these early works are rather primitive
and are not optimized according to light field properties. As result, the recovered
particles are relatively sparse and the reconstruction accuracy is lower than tra-
ditional PIV. Shi et al. [37, 38] use ray tracing to estimate particle velocity with
a light field camera, and conduct comparison with Tomo-PIV. In our approach,
we exploit the focal stack symmetry [25] of light fields for more accurate depth
reconstruction in presence of heavily occluded dense particles.

To recover the flow motion, standard PIV uses 3D cross-correlation to match
local windows between neighboring time frames [9, 44]. Although many improve-
ments (for instance, matching with adaptive window sizes [22]) have been made,
the window-based solutions suffer problems at regions with few visible particles.
Another class of methods directly track the path of individual particles over
time [29, 36]. However, with increased particle density, tracking is challenging
under occlusions. Heitz et al. [15] propose the application of variational opti-
cal flow to fluid flow estimation. Vedula et al. [43] extend the optical flow to
dynamic environment and introduce the scene flow. Lv et al. [26] use a neural
network to recover 3D scene flow. Unlike natural scenes that have diverse fea-
tures, our PIV scenes only contain similar-looking particles. Therefore, existing
optical flow or scene flow algorithms are not directly applicable to our prob-
lem. Some methods [47, 23] incorporate physical constraints such as the Stokes
equation into optical flow framework to recover fluid flows that obey physical
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Fig. 1. Overall pipeline of our light field PIV 3D fluid flow reconstruction algorithm.

laws. However, these physics-based regularizations are in high-orders and are
difficult to solve. In our approach, we introduce two novel regularization terms:
1) rigidity-enforced particle correspondence term and 2) divergence-free term to
refine the basic variational optical flow framework for estimating the motion of
dense particles.

3 Our Approach

Fig. 1 shows the algorithmic pipeline of volumetric 3D fluid flow reconstruction
using light field PIV. For each time frame, we first detect particles in the light
field sub-aperture images using the IDL particle detector [7]. We then estimate
particle depths through a joint optimization that exploits light field properties.
After we obtain 3D particle locations, we compare two consecutive frames to
establish one-to-one particle correspondences and finally solve the 3D velocity
field using a constrained optical flow.

3.1 3D Particle Reconstruction

We first describe our 3D particle reconstruction algorithm that exploits various
properties of light field.

Focal Stack Symmetry. A focal stack is a sequence of images focused at different
depth layers. Due to the post-capture refocusing capability, a focal stack can be
synthesized from a light field by integrating captured light rays. Lin et al. [25]
conduct symmetry analysis on focal stacks and show that non-occluding pixels
in a focal stack exhibit symmetry along the focal dimension centered at the
in-focus slice. In contrast, occluding boundary pixels exhibit local asymmetry
as the outgoing rays are not originated from the same surface. Such property
is called focal stack symmetry. As shown in Fig. 2, in a focal stack, a particle
exhibits symmetric defocus effect centered at the in-focus slice. It’s also worth
noting that occluded particles could be seen in the focal stack as the occluder
becomes extremely out-of-focus. Utilizing the focal stack symmetry helps resolve
heavily occluded particles and hence enhances the accuracy and robustness of
particle depth estimation.

Given a particle light field, we synthesize a focal stack from the sub-aperture
images by integrating rays from the same focal slice. Each focus slice f has a
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Focal Stack

Near Far
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Fig. 2. Focal stack symmetry. We show zoom-in views of four focal slices on the right.
A particle exhibits symmetric defocus effect (e.g., 31.5mm and 36.5mm slices) centered
at the in-focus slice (34mm). In the 39mm slice, an occluded particle could be seen as
the occluder becomes extremely out-of-focus.

corresponding disparity d that indicates the in-focus depth layer. Let I(p, f) be
the intensity of a pixel p at focal slice f . For symmetry analysis, we define an
in-focus score κ(p, f) a pixel p at focal slice f as:

κ(p, f) =

∫ δmax

0

ρ(I(p, f + δ)− I(p, f − δ))dδ (1)

where δ represents tiny disparity/focal shift and δmax is maximum shift amount;

ρ(ν) = 1 − e−|ν|2/(2σ2) is a robust distance function with σ controlling its sen-
sitivity to noises. According to the focal stack symmetry, the intensity profile
I(p, f) is locally symmetric around the true surface depth. Therefore, if the pixel

p is in focus at its true depth sparity d̂, κ(p, d̂) should be 0. Hence given an es-

timated disparity d at p, the closer distance between d and d̂, the smaller the
κ(p, d̂). We then formulate the focal stack symmetry term βfs for particle depth
estimation by summing up κ(p, d) for all pixels in a focal slice f with disparity
d:

βfs(d) =
∑
p

κ(p, d) (2)

Color and Gradient Consistency. Besides the focal stack symmetry, we also
consider the color and gradient data consistency across sub-aperture images for
depth estimation using data terms similar to [25]. Specifically, by comparing
each sub-aperture image with the center view, we define a cost metric C(i, p, d)
as:

C(i, p, d) = |Ic(ω(p))− Ii(ω(p+ d(p)χ(i)))| (3)

where i is the sub-aperture image index; Ic and Ii refers to the center view and
sub-aperture image respectively; ω(p) refers to a small local window centered
around pixel p; d(p) is an estimate disparity at pixel p; and χ(i) is a scalar that
scale the disparity d(p) according to the relative position between Ic and Ii as
d(p) is the pixel-shift between neighboring sub-aperture images.
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The cost metric C measures the intensity similarity between shifted pixels
in sub-aperture images given an estimated disparity. By summing up C for all
pixels, we obtain the sum of absolute differences (SAD) term for color consistency
measurement:

βsad(d) =
1

N

∑
i∈N

∑
p

C (4)

where N is the total number of sub-aperture images (excluding the center view).
Besides the color consistency, we also consider the consistency in gradient

domain. We first take partial derivates of cost metric C (Eq. 3) in both x and
y directions: Dx = ∂C/∂x and Dy = ∂C/∂y and then formulate the following
weighted sum of gradient differences (GRAD) for gradient consistency measure-
ment:

βgrad(d) =
1

N

∑
i∈N

∑
p

W(i)Dx + (1−W(i))Dy (5)

In Eq. 5, W(i) is a weighing factor that determines the contribution of hor-
izontal gradient cost (Dx) according to the relative positions of the two sub-
aperture images being compared. It is defined as W(i) = ∆ix

∆ix+∆iy
, where ∆ix

and ∆iy are the position differences between sub-aperture images along x and
y directions. For example, W(i) = 1 if the target view is located at the horizon-
tal extent of the reference view. In this case, only the gradient costs in the x
direction are aggregated.

Particle Depth Estimation. Finally, combining Eq. 2, 4, and 5, we form the
following energy function for optimizing the particle disparity d:

β(d) = βfs(d) + λsadβsad(d) + λgradβgrad(d) (6)

In our experiments, the two weighting factors are set as λsad = 0.8 and
λgrad = 0.9. We use the Levenberg-Marquardt (LM) optimization to solve Eq. 6.
Finally, using the calibrated light field camera intrinsic parameters, we are able
to convert the particle disparity map to 3D particle location. The pipeline of our
3D particle reconstruction algorithm is shown in Fig. 3.

Sub-aperture images Detected particles Disparity map 3D particles

Fig. 3. Our 3D particle reconstruction algorithm pipeline.



3D Fluid Flow Reconstruction Using Compact Light Field PIV 7

3.2 Fluid Flow Reconstruction

After we reconstruct 3D particles in each frame, we compare two consecutive
frames to estimate the volumetric 3D fluid flow.

Given two sets of particle locations S1 and S2 recovered from consecutive
frames, we first convert S1 and S2 into voxelized 3D volumes as occupancy
probabilities Θ1 and Θ2 through linear interpolation. Our goal is to solve per-
voxel 3D velocity vector u = [u, v, w] for the whole volume.

In particular, we solve this problem under the variational optical flow frame-
work [17] and propose two novel regularization terms, the correspondence term
and the divergence-free term, for improved accuracy and efficiency. Our overall
energy function Etotal is combination of regularization terms and is written as:

Etotal = Edata + λ1Esmooth + λ2Ecorres + λ3Ediv (7)

where λ1, λ2, and λ3 are term balancing factors. Please see our supplementary
material for mathematical details of solving this energy function. In the following,
we describe the algorithmic details of each regularization term.

Basic Optical Flow. The data term Edata and smooth term Esmooth are adopted
from basic optical flow. They are derived from the brightness constancy assump-
tion. Edata enforces consistency between occupancy possibilities Θ1 and Θ2 at
corresponding voxels and Esmooth constrain the fluid motion to be piece-wise
smooth. In our case, Edata and Esmooth can be written as:

Edata(u) =

∫
||Θ2(p + u)−Θ1(p)||22dp

.

(8)

Esmooth(u) = ||∇ · u||22 (9)

where p refers to a voxel in fluid volume and ∇ is the gradient operator.

Correspondence Term. We propose a novel correspondence term for more accu-
rate flow estimation. Notice that Edata in the basic optical flow only enforces
voxel-level consistency while particle-to-particle correspondences are not guaran-
teed. We therefore develop a correspondence term Ecorres to enforce one-to-one
particle matching. Ecorres helps improve matching accuracy especially in regions
with high particle density.

Let’s consider two sets of particles: S1 = {s1|s1 ∈ R3} as reference and
S2 = {s2|s2 ∈ R3} as target. Ecorres enforces the one-to-one particle matching
between the target and reference sets. To formulate Ecorres, we first estimate
correspondences between particles in S1 and S2. We solve this problem by esti-
mating transformations that map particles in S1 to S2.

In particular, we employ a deformable graph similar to [42] that considers
local geometric similarity and rigidity. To build the graph, we uniformly sample
a set of particles in S1 and use them as graph nodes G = {g1, g2, g3, ..., gm}. We
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then aim to estimate a set of affine transformations A = {Ai}mi=1 and b = {bi}mi=1

for each graph node. We then use these graph nodes as control points to deform
particles in S1 instead of computing transformations for individual particles.
Given the graph node transformations A and b, we can transform every particle
s1 ∈ S1 to it new location s′1 using a weighted linear combination of graph nodes
transformations:

s
′

1 = f(s1,A,b) =
m∑
i=1

$i(s1)(A(s1 − gi) + gi + bi) (10)

where the weight $i(s1) = max(0, (1 − ||s1 − gi||2/R2)3) models a graph node
gi influence on a particle s1 ∈ S1 according to their Euclidean distance. This
restricts the particle transformation to be only affected by nearby graph nodes. In
our experiment, we consider the nearest four graph nodes and R is the particle’s
distance to its nearest graph node.

To obtain the graph node transformations A and b, we solve an optimization
problem with energy function:

Ψtotal = Ψdata + α1Ψrigid + α2Ψsmooth (11)

Ψdata is the data term aims to minimize particle-to-particle distances after
transformation and is thus formulated as:

Ψdata =
∑
s1∈S1

||s′1 − ci||2 (12)

where ci is the closest point to s
′

1 in S2.
Ψrigid is a rigidity regularization term that enforces the local rigidity of affine

transformation. Ψrigid can be written as:

Ψrigid =
∑
G

||ATi Ai − I||2F + (det(Ai)− 1)2 (13)

where I is an identity matrix.
The last term Ψsmooth enforces the spatial smoothness of nearby nodes and

is written as:

Ψsmooth =
∑
G

∑
k∈Ω(i)

||Ai(gk − gi) + gi + bi − (gk + bk)||2 (14)

where Ω(i) refers to the set of nearest four neighbors of gi.
The overall energy function Ψtotal can be optimized with an iterative Gauss-

Newton algorithm and the affine transformations A and b are thus solved. In
our experiment, we use α1 = 50 and α2 = 10 for Eq. 11.

By applying Eq. 11, we can transform every particle s1 ∈ S1 to it new loca-
tion s′1 using the graph nodes’ transformations. We then find S1’s corresponding
set Sc2 in the target S2 using a nearest neighbor search (ie, sc2 =nnsearch(s′1, s2)).
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After we establish the one-to-one correspondences between S1 and S2, our cor-
respondence term can be formulated based on the color consistency assumption
as follow:

Ecorres(u, S1, S
c
2) =

∑
s1∈S1,sc2∈Sc

2

||sc2 − (s1 + u(s1))||22 (15)

We show the effectiveness of the correspondence term by comparing the ve-
locity field obtained with vs. without Ecorres. The results are shown in Fig. 4.
This comparison demonstrates that our correspondence term greatly improves
matching accuracy and hence benefits flow reconstruction.

w/o Ecorres with Ecorres

Match Rate: 68.5% Match Rate: 91.5%

Fig. 4. Particle matching between source and target volumes with vs. without using the
correspondence term Ecorres. In our plots, green lines indicate correct correspondences
and red lines indicate incorrect ones.

Divergence-Free Term. To enforce the physical properties of incompressible fluid,
we add a divergence-free regularization term Ediv to the optical flow framework.
Based on the Navier-Stoke equations, fluid velocity u can be split into into
two distinct components: irrotational component ∇P and solenoidal component
usol = [usol, vsol, wsol] with the Helmholtz decomposition. The Irrotational com-
ponent ∇P is curl-free and is determined by the gradient of a scalar function P
(eg, pressure). The solenoidal component usol is divergence-free and models an
incompressible flow. From the divergence-free property, we have:

∇ · usol = 0 (16)

where ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ]T is the divergence operator. Since u = usol+∇P , taking

divergence on both sides, we have:

∇ · u = ∇2P (17)

We solve Eq. 17 by Poisson integration and compute the scalar field as P =
(∇2)−1(∇ · u). We then project u into the divergence-free vector field: usol =
u−∇P . Similar to [11], we formulate a divergence-free term Ediv that enforces
the flow velocity field u close to its divergence-free component usol:

Ediv(u) = ||u− usol||22 (18)
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4 Experimental Results

To evaluate our fluid flow reconstruction algorithm, we perform experiments on
both synthetic and real data under the light field PIV setting. We also evaluate
our method on the John Hopkins Turbulence Database (JHUTDB) [24, 34] that
has the ground truth fluid flow. All experiments are performed on a PC with
Intel i7-4700K CPU with 16G of memory. On the computational time, the en-
tire process takes about 2 minutes: 30 seconds for particle location estimation
and 40 seconds for correspondence matching, and 50 seconds for velocity field
reconstruction.

4.1 Synthetic Data

We first evaluate our proposed approach on simulated flows: a vortex flow and a
drop flow. The flows are simulated within a volume of 100× 100× 20 voxels. We
randomly sample tracer particles within the fluid volume. The particle density
is 0.02 per voxel. We render light fields images with angular resolution 7×7 and
spatial resolution 434 × 625. We simulate the advection of particles over time
following the method in [40]. We apply our algorithms on the rendered light
fields to recover 3D fluid flows. In Fig. 5, we show our recovered velocity fields in
comparison with the ground truth ones. Qualitatively, our reconstructed vector
fields are highly consistent with the ground truth ones.

Ground truth Ground truthOur result Our result

Vortex flow Droplet flow

0.0

1.5

1.0

0.5

Fig. 5. Synthetic results in comparison with the ground truth.

We perform quantitative evaluations using two error metrics: the average
end-point error (AEE) and the average angular error (AAE). AEE is computed
as the averaged Euclidean distance between the estimated particle positions and
ground truth ones. AAE is computed with the average difference of vector in the
velocity field. We compare our method with the multi-scale Horn-Schunck (H &
S) [30] and the rainbow PIV [47]. Specifically, we apply H & S on our recovered
3D particles and use it as the baseline algorithm for flow estimation. With this
comparison, we hope to demonstrate the effectiveness of our regularization terms
in flow estimation. For rainbow PIV, we have implemented a renderer to generate
depth-dependent spectral images of virtual particles. To ensure fairness, the
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rendered images have the same spatial resolution as our input light field (ie,
434× 625).

We also perform ablation study by testing two variants of our method: “w/o
Ecorres” that takes out the correspondence term and “w/o Ediv” that takes out
the divergence-free term. The experiments are performed on the vortex flow with
particle density 0.02. Quantitative evaluations are shown in Fig. 6. The error
maps of recovered velocity fields for our ablation study are shown Fig. 7. We
can see that our method achieves the best performance when both regularization
terms are imposed. Our outperforms both H & S and the rainbow PIV at various
particle density levels. Further, our accumulated error over time grows much
slower than the other two state-of-the-arts.
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Average end point error (AEE)
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Ours
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w/o Ecorres
w/o Ediv
Ours

H&S
Rainbow
w/o Ecorres
w/o Ediv
Ours

Particle density (Particle #/Voxel Unit) Time frame

Fig. 6. Quantitative evaluation. The left two plots show errors with respect to different
particle densities. The right two plots show accumulated errors over time.

Horn & Schunk
w/o Ecorres

w/o Ediv Ours 0.5

0.0

Fig. 7. Ablation study. We show the error maps of estimated velocity field at three
fluid volume slices.

4.2 John Hopkins Turbulence Database (JHUTDB)

Next we conduct experiments on data generated from the Johns Hopkins Tur-
bulence Database (JHUTDB) [24]. To reduce processing time, we crop out a
volume of 256× 128× 80 voxels for each turbulence in the dataset. The norm of
the velocity field at each location ranges from 0 to 2.7 voxels per time step. We
generate random tracer particles with density 0.025 per voxels and advect the
particles according to the turbulence velocity field. In our evaluation, we render
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two light field images at two consecutive frames to estimate the particle locations
and reconstruct the velocity field. Our reconstruction results in comparison with
the ground truth is shown in Fig. 8. We show our reconstructed velocity volume
in x, y, z directions. We also show the error map of magnitudes to illustrate that
our method is highly accurate.
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Fig. 8. JHUTDB velocity field reconstruction results.

4.3 Real Data

Fig. 9. Our real experiment setup. We use
a compact light field camera in PIV setting.

We finally test our method on real
captured flow data. Fig. 9 shows our
acquisition system for capturing real
3D flows. We use a Lytro Illum light
field camera with 30mm focal length
to capture the tracer particles in fluid.
As Illum does not have video mode,
we use an external control board to
trigger the camera at high frequency
to capture consecutive time frames.
Due to the limitation of on-chip im-
age buffer size, our acquisition can-
not achieve very high frame rate. In
our experiment, we set the trigger fre-
quency to be 10 Hz. The capture light
field has angular resolution 15×15 and
spatial resolution 625 × 434. We use
the light field calibration toolbox [8] to process and decode raw light field data
into sub-aperture images. We use the center view as reference for depth estima-
tion and the effective depth volume that we are able to reconstruct is around
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Fig. 10. Real experiment results. We show our recovered velocity fields (upper row)
and path line visualizations on four consecutive frames (lower row) for three types of
flows: vortex, double vortex and a random complex flow.

600× 500× 200 (mm), slightly lower than the capture image because we enforce
rectangular volumes inside the perspective view frustum.

We use green polyethylene microspheres with density 1g/cc and size 1000-
1180 µm as tracer particles. Before dispersing the particles, we mix some sur-
factant with the particles to reduce surface tension caused by water in order
to minimize agglomeration between particles. We test on three types of flows:
vortex, double vortex, and random complex flows.

Fig. 10 shows our recovered fluid flow velocity field and path line visualization
(please refer to the supplemental material for more reconstruction results). We
show three flow types, vortex, double vortex, and random complex flows. The
left column shows the velocity field between first and the second frame. The
right column shows the path line visualization through 1 - 4 frames. We can see
that our reconstructions well depicts the intended fluid motions and are highly
reliable.

We also compare our method with a recent state-of-the-art scene flow method
[26] on the real data. The scene flow method takes two consecutive RGB-D
images as inputs and use rigidity transform network and flow network for motion
estimation. Since the method also needs depth map as input, we first calculate a
depth map for the center view of light field and then combine the depth map with
the sub-aperture color image and use them as input for [26]. The flow estimation
results are shown in Fig. 11. We show the projected scene flows and the flow
vector fields for three types of flows (single vortex, double vortex, and random
flow). The scene flow method fails to recover the flow structures, especially for
vortex flows. This is because our particles are heavily occluded and have very
similar appearances. Further, the scene flow algorithm does not take the physical
properties of fluid into consideration.
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Fig. 11. Comparison result with scene flow (Lv et al. [26]) on the real data. We compare
the project scene flow and the flow vector field on three types of flows.

5 Conclusions

In this paper, we have presented a light field PIV solution that uses a commercial
compact light field camera to recover volumetric 3D fluid motion from tracer
particles. We have developed a 3D particle reconstruction algorithm by exploiting
the light field focal stack symmetry in order to handle heavily occluded particles.
To recover the fluid flow, we have refined the classical optical flow framework
by introducing two novel regularization terms: 1) the correspondence term to
enforce one-to-one particle matching; and 2) the divergence-free term to enforce
the physical properties of incompressible fluid. Comprehensive synthetic and real
experiments as well as comparisons with the state-of-the-arts have demonstrated
the effectiveness of our method.

Although our method can faithfully recover fluid flows in a small to medium
volume, our method still has several limitations. First of all, due to the small
baseline of compact light field camera, the resolvable depth range is rather lim-
ited. As a result, our volumetric velocity field’s resolution along the z-axis is
much smaller than its x- or y-resolutions. One way to enhance the z-resolution is
using a second light field camera capturing the fluid volume from an orthogonal
angle. Second, in our fluid flow reconstruction step, only two consecutive frames
are considered. Hence motion continuity might not always be satisfied. Adding
temporal constraint to our optimization framework can be further improved.
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