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Abstract. Face recognition in an uncontrolled environment is challeng-
ing as body movement and pose variation can result in missing facial
features. In this paper, we tackle this problem by fusing multiple RGB-
D images with varying poses. In particular, we develop an efficient pose
fusion algorithm that frontalizes the faces and combines the multiple
inputs. We then introduce a new 3D registration method based on the
unified coordinate system (UCS) to compensate for pose and scale varia-
tions and normalize the probe and gallery face. To perform 3D face recog-
nition, we train a Support Vector Machine (SVM) with both 2D color
and 3D geometric features. Experimental results on a RGB-D dataset
show that our method can achieve a high recognition rate and is robust
in the presence of pose and expression variations.
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images · Pose fusion · 3D Face registration

1 Introduction

Face recognition (FR) is of great importance as it has numerous applications
in access control, surveillance system, and law enforcement. Although the past
decade has witnessed tremendous advances in 2D face recognition [5,26], robust
recognition in an uncontrolled environment is still challenging as the facial
appearance in 2D images is sensitive to illumination, viewpoint, pose, and expres-
sion variations. In addition, body movement and/or head motion can cause large
occlusions and result in missing facial features. It is urgent to overcome these
challenges and provide successful solutions to benefit both civilian and military
applications. A viable solution is to apply 3D face models for recognition [27]. As
directly associated with the face geometry, a 3D face model is inherently invari-
ant to scene properties (e.g., illumination and viewpoint). However, a complete
and accurate 3D face acquisition is often time-consuming and requires expensive
devices [22]. Some approaches [2,32] recover 3D face models from one or multiple
2D images by fitting statistical models (e.g., 3DMM [4]). Although no special-
ized hardware is needed, these methods are usually computationally intensive
and the recovered face models are less accurate.
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Fig. 1. Schematic illustration of our FR scheme in an uncontrolled environment.

In this paper, we use RGB-D images for 3D face recognition since RGB-D
cameras are cheap and easily accessible. However, self-occlusions caused by pose
variations result in missing facial features. Most RGB-D image-based methods
utilize symmetric filling to complete the 3D face model [16,20,25]. Nevertheless,
facial asymmetry renders the completion inaccurate. When multiple 3D scans
are available, the Iterative Closest Point (ICP) algorithm [3] can be adopted to
combine partial 3D face models. But in case of large pose changes where the
partial models have small overlap, the ICP algorithm might fail to align them.
The seminal work of KinectFusion [33] generated high-quality 3D reconstruction
using a moving RGB-D camera. However, this method is not suitable for face
recognition with stationary sensors.

To tackle the occlusion problem caused by pose variations, we propose a
system consisting of multiple low-cost RGB-D cameras (e.g., Microsoft Kinect)
for 3D face recognition (see Fig. 1). The RGB-D cameras surround the subject
to capture varying poses. Conceptually, our system can be deployed in various
indoor environments (e.g., a building interior and cave) and is able to handle
uncontrolled conditions. To fuse face models with varying poses, we develop an
efficient fusion algorithm that first frontalizes the faces and then merges the
partial face models in a uniform grid. We then introduce a new 3D registra-
tion method based on the unified coordinate system (UCS) to compensate for
pose and scale variations. We use the UCS to normalize the gallery (frontal face
model) and probe (combined model). To perform 3D face recognition, we train
a Support Vector Machine (SVM) using both 2D color and 3D depth features.
Specifically, we extract 2D features from a normalized canonical color image
using a convolutional neural network (CNN) based on a deep feature extractor.
We then use the expression-invariant geodesic distances between facial land-
marks that are computed on 3D facial meshes as 3D geometric features. We
finally concatenate these 2D and 3D features to train the SVM for FR. The
processing pipeline of our approach is shown in Fig. 2. Through experiments
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Fig. 2. Processing pipeline of our 3D FR algorithm.

on an RGB-D dataset [16] and comparisons with the state-of-the-art methods,
we show that our approach has a high FR accuracy but relatively low com-
putational complexity. More importantly, our approach is robust to pose and
expression variations.

2 Related Work

A FR system usually consists of three basic modules [24]: (1) a face detection
module for detecting the facial region [31]; (2) a feature detection and alignment
module for data normalization [11,35]; and (3) a recognition module applied on
the normalized faces [34]. As we present a new pose-invariant FR algorithm in
this paper, we briefly review related studies on face registration and 3D FR.

Face Registration. According to [6,13], pose variation is a major factor that
leads to reduced FR accuracy. Hence pose-invariant face recognition is of great
importance. Face registration aims to align the faces of different poses to a
canonical pose. In this way, pose variation is eliminated. Existing face regis-
tration methods can be classified into three major categories: (1) one to one
registration; (2) all to mean face registration, and 3)registration by coordinate
normalization. Given 3D face point clouds, the first-class registers the probe
point cloud to each reference face in the gallery by an iterative procedure [23].
The Iterative Closest Point (ICP) algorithm is usually adopted for optimiza-
tion. However, without good initialization of the parameters, the ICP may fail
to converge. Instead of mapping the probe to each face in the gallery, the second
class aligns all the face models to a mean face model learned from a training set
[9,12]. Each face only needs one-time registration. Therefore, the computational
cost is significantly decreased. However, these methods may suffer from large
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registration errors. The third class aligns faces of different poses by normaliz-
ing the coordinates of detected facial landmarks [29]. A set of facial landmarks
is first detected and then transformed into a common coordinate system. The
resulting transformation is applied to the entire face point cloud for registration.
This class of methods is more efficient than the other two in terms of computa-
tional cost. However, the accuracy still largely depends on the quality of detected
landmarks, which might be missing in the presence of large pose variations. In
this paper, we propose to first fuse faces with different poses and then use a
unified coordinate system (UCS) to align the 3D face models. Our fused face
is more robust to pose variations because it incorporates partial features from
each pose to a complete set. Our UCS-based 3D face registration considers the
depth information and is, therefore, more accurate than conventional 2D face
registration.

3D Face Recognition. We refer readers to [21] for a comprehensive overview
of 3D FR. Here, we focus on how 3D FR algorithms handle challenges in pose
and expression variations as well as corrupted data. We classify existing 3D FR
algorithms into three categories: (1) local descriptor-based; (2) global/model
descriptor-based [1]; and (3) learning-based techniques [14,36]. The first cate-
gory utilizes the characteristics of a small local neighborhood such as curva-
tures, shape index, and normals for matching. To list a few, Mian et al. [18]
fused 3D keypoints with 2D Scale Invariant Feature Transform (SIFT) to iden-
tify 3D faces. Gupta et al. [10] matched the 3D Euclidean and geodesic distances
between pairs of facial landmarks for 3D FR. Yet, these approaches are sensi-
tive to facial expressions. The second category usually derives a 3D morphable
face model and fits it to all probe faces. The best-matched 3D face is then
used for recognition. For example, Gilani et al. [8] conducted FR by matching
keypoint-based features on a statistical morphable model. However, these meth-
ods do not explicitly capture the actual 3D information, with a low-quality depth,
they are less accurate, and do not work well on the RGB-D data. Although the
third category has achieved great success in 2D FR, its application to 3D FR is
still limited due to the absence of massive 3D face datasets. For instance, Kim
et al. [14] fine-tuned the VGG-Face network on depth images to generate 3D
feature descriptors and then used Principal Component Analysis (PCA) for fea-
ture matching. Gilani et al. [36] developed an end-to-end 3D FR framework by
training an augmented 3D face dataset. Although these methods are successful,
their datasets and network models are not publicly available. In this paper, we
leverage a pre-trained deep neural network for 2D color feature extraction and
then integrate expression-invariant 3D features for 3D FR.

3 Pose Fusion Using RGB-D Images

In this section, we describe our pose fusing algorithm using RGB-D images. The
goal of the algorithm is to obtain a face model with a complete set of facial
landmarks (i.e., four eye corners, nose tip, and two mouth corners, as shown in
Fig. 3(a)) by fusing RGB-D images with varying poses.
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Fig. 3. (a) 3D rotations (yaw, pitch, and roll) with respect to our coordinate axes.
(b) Pose fusion results that combine input poses with different rotation angles (α and
β refer left and right yaw angles). (c) Recognition rates for using various pose fusion
results in (b) as the probe. We compare with the completion results by symmetric
filling (SF).

Given RGB-D images as input, we first pre-process the data to recover a point
cloud using depth values and crop out the local face region by fitting a sphere
centered at the nose tip. The radius of the sphere is determined according to
the face scale. The face point cloud is further translated with the nose tip as the
origin of coordinates. We then set out to combine the partial face point clouds
with varying poses to restore the complete face model. A näıve approach is to
directly apply the ICP algorithm to merge the partial point clouds. However,
ICP fails easily in case of extreme poses with small overlaps. Instead, we apply
3D rotation to frontalize the faces and merge them into a uniform grid.

In an uncontrolled condition, the 3D face point cloud can exhibit three types
of rotations: in-plane, pose, and tilt rotations, which are commonly referred to as
roll, yaw, and pitch (see Fig. 3(a)). We use 3D rotation matrices to model these
variations and revert the rotations to frontalize the face. To estimate the rotation
parameters, we compare the nose region in our 3D face with a nose template
from a standard frontal mean face. We compare intensities in the range images
instead of the 3D models to reduce the computational cost.

Assuming the range images of our sampled nose region and the mean face
nose template to be NR(i, j) and NT (i, j), i, j ∈ N. We use a weighted normalized
cross correlation (WNCC) Γ to assess the similarity between NR and NT :

Γ (NR, NT ) = w ·

∑

i,j∈N

(
NR(i, j) − N̄R

) · (
NT (i, j) − N̄T

)

√∑

i,j

(
NR − N̄R

)2 ·
√∑

i,j

(
NT − N̄T

)2
(1)

where N̄R and N̄T are the mean values of NR and NT . The weight w is introduced
to compensate for the missing data in the low-quality RGB-D images and is
computed as the percentage of valid range data in the whole grid.
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Fig. 4. UCS transformation and the face plane. (a) We illustrate the facial landmarks
for constructing the UCS vertical face plane; (b) The initial face plane in the world
coordinate system is not vertical due to pose variations; (c) The face plane becomes
vertical after UCS transformation.

We then conduct a coarse-to-fine search to find the optimal rotation angle.
Firstly, we use a relatively large search step, initialized as π/60, in the coarse
search phase to maximize the Γ and shrink the search space to θc ±π/30, where
θc corresponds to the coarse optimal rotation angle. Then, we implement a more
precise search on the refined search space to further optimize Γ . We conduct
this search algorithm by reducing the search step iteratively until Γ converges.
To speed up our searching process, we employ a bilateral face ratio η that can
effectively reduce the initial searching space: η = num(Il)/(num(Il)+num(Ir)),
where num(Il) and num(Ir) are facial pixel counts in the left and right sub-
images. If η > 0.5, we search θ in [0, π/2]; otherwise, θ ∈ [−π/2, 0].

Finally, we merge the frontalized point clouds and their corresponding range
images by box/grid averaging to generate a resampled face model, denoting the
face pre-model. We apply a box filter to the face pre-model to further smooth out
the noise. Figure 3(b) illustrates our pose fusion results by combining input poses
with various rotation angles. We can see that our method is able to handle large
pose variations (±π/2). We also compare our fusion method with symmetric
filling in terms of recognition rates (see Fig. 3(c)). We can see that although
recognition rates go down as rotation angle increases, our method still works
better than the baseline symmetric filling algorithm in all scenarios.

4 Face Normalization Using Unified Coordinate System

In order to normalize the face models for recognition, we introduce a unified
coordinate system (UCS) to compensate pose and scale variations. Our UCS is
invariant to sensor position with respect to the human subject when the face
image is taken (i.e., invariant relative to the head pose).

Our UCS transformation can be viewed as a 3D registration (or 3D stereo-
tactic registration) method. Our method transforms the 3D face pre-model into
the UCS to generate a 3D registered face model. The coordinate transformation
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contains 3D rotation and scaling where the rotation generalizes yaw, pitch, and
roll; and scaling normalizes the face size. After UCS transformation, all face
models are in a common space and could be fairly compared for recognition.

Now we describe how to construct the UCS. When a human face in 3D is
viewed from the side, the depth of the eyes and the mouth are different, which
is unique for each person. Thus, when a human head is in a normal position,
which is normally termed as a frontal pose, the centers of corners of each eye
and the corners of mouth are on two different vertical planes. So the goal of our
UCS transformation is to compensate this depth variation such that these four
points are on the same vertical plane and we call it the face plane (see Fig. 4).
We can see that in order to have the face plane being vertical, the human head
is tilted from the normal frontal pose.

To sum up, our UCS is defined with the following steps: (1) we identify
five facial landmarks (i.e., nose tip p1, center of the left eye corners p2, center
of the right eye corners p3, left mouth corner p4, and right mouth corner p5)
using the color image; (2) we form a plane use p2 ∼ p5 (if they do not share
the same plane, we use the plane in which the distances of the four points are
minimal) and estimate the plane’s orientation in the world coordinate system;
(3) we perform a coordinate transformation such that p1 is the origin and the
face plane is vertical; (4) we scale the coordinate by dividing by a scale factor
s, where s is the distance from p1 to line p2p3 such that the sizes of the face
models are normalized. The new coordinate system is our UCS where the pose
and scale of the face models are normalized. We apply the UCS transformation
on both the gallery face and the probe face.

5 RGB-D Face Recognition

In this section, we present a Support Vector Machine (SVM)-based RGB-D face
recognition algorithm to identify the probe face in the gallery set. We propose a
color and geometric (CG) feature extractor to retrieve the 2D features from the
color images and 3D geometric features from the 3D face meshes to describe the
face model. Our SVM is trained with CG features from the gallery. Specifically,
we leverage a VGG-Face [19] pre-trained convolutional network (CNN) to extract
2D feature vectors from the input color images. To exploit the depth information,
we compute the geodesic distances between the facial landmarks on the 3D face
meshes and use them as 3D features to allow expression-invariant recognition.
By jointly considering the 2D color and 3D depth information, our FR algorithm
on the RGB-D images is able to achieve a high recognition rate and is robust
under an uncontrolled environment with pose and expression variations. Our FR
algorithm is illustrated in Fig. 5. In the following paragraphs, we describe each
component in detail.

2D Color Feature. Recent deep networks [19,28] have had great success in 2D
face recognition, and the datasets with millions of face images are used to train
a robust face classifier. Deep convolutional networks (CNNs) use a cascade of
multiple layers of processing units for feature extraction and transformation [30].
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Fig. 5. Our SVM-based face recognition scheme using the Color and Geometric (CG)
Feature Extractor.

According to [28], the bottom layers of the CNN typically extract the low-level
features of an image, such as Gabor and SIFT. These low-level features can be
extracted from an arbitrary generic natural image. In contrast, the outputs of
the CNN top layers exhibit high-level characteristics that correspond to facial
attributes such as poses and expressions and are thus critical to robust face
recognition. Therefore, fine-tuning a pre-trained CNN on a new dataset is an
efficient way to achieve high recognition accuracy but with less computational
effort. VGG-Face [19] is a CNN-based 2D FR architecture trained on a dataset of
2.6M images and 2622 unique identities. It contains 22 layers, among which there
are 13 convolutional layers, 5 max pooling layers, 3 fully connected layers, and
a Softmax layer. The expected image resolution of the input layer is 224 × 224.
We therefore take advantage of the VGG-Face to extract 2D color features from
our input. To fit the input resolution of VGG-Face, our 2D color face image is
resized to 224× 224. We then transfer all the weights from VGG-Face to a CNN
but remove all fully-connected layers and only keep the embedded 7 × 7 × 512
features maps. We then flatten the feature maps to a 1D array and use it as our
2D color feature.

3D Geometric Feature. To exploit the depth information, we also extract 3D
geometric features from our 3D face models. We choose the geodesic distances as
our 3D geometric feature because the geodesic distance is the shortest distance
between two points on a curved surface and is robust to expression changes
[7,17]. To compute geodesic distances, we first construct triangular meshes using
the face point cloud by Delaunay triangulation. We then use a smoothing filter
to reduce the mesh noise. In our experiment, we implement the fast marching
algorithm [15] to compute the geodesic distances on the face mesh from a source
point. Facial landmarks are first detected on color images and then transferred
to 3D meshes. By assigning k (in our paper, k = 68) facial landmarks on each



438 Y. Ding et al.

mesh, we generate a k×k matrix, where the (m,n) element indicates the geodesic
distance from the m-th landmark to the n-th landmark. We resize this geodesic
distance matrix into a 1D array and use it as our 3D geometric feature.

SVM Training. We finally concatenate the 2D color feature generated by pre-
trained CNN and the 3D geometric feature computed with the geodesic distances
and use it as our RGB-D face descriptor for classification. To perform face recog-
nition, we train a support vector machine (SVM) as a classifier. Feature descrip-
tors from the gallery set (frontal views) are used for training and the probe face
by fusing multiple side views are used as testing input for recognition.

6 Experiments and Results

To validate our approach, we perform the experiment on the CurtinFace dataset
[16] in which the RGB-D images are collected by Kinect. The dataset contains
52 subjects (42 males and 10 females), each has different poses, illuminations,
and facial expressions. We use the frontal views as the gallery and side-view
poses as probes. We use various poses of the same subject to emulate the images
captured by our proposed multiple RGB-D camera system.

We compare our method with three state-of-the-art face frontalization algo-
rithms: Li et al. [16], Hassner et al. [11], and Zhu et al. [35]. In order to prove
the advantage of our CG feature extractor, we also compared it with a state-of-
the-art 3D face recognition method, Emambakhsh et al. [7]. We perform both
quantitative and qualitative comparisons on pose fusion and face recognition.
All experiments are performed on a desktop PC with Intel Core i7-7700T CPU,
64 GB memory and two NVIDIA GeForce GTX 1060 6 GB GPUs. The vary-
ing pose fusion, UCS transformation, and geodesic distances are implemented
through MATLAB R2018a. The SVM classifier and FR training are implemented
with Sklearn, Tensorflow, and Keras.

Pose Fusion. We first demonstrate the effectiveness of our pose fusion algo-
rithm. We perform a comparison with the three state-of-the-art face frontaliza-
tion algorithms: Li et al. [16], Hassner et al. [11], and Zhu et al. [35]. Hassner
et al. [11] and Zhu et al. [35] are designed for 2D face images. They first frontalize
a 2D side-view face by first mapping it to a 3D frontal view average face model
and then projecting the matched point cloud to xy-plane. Li et al. [16] took 3D
face models as input and adopted the ICP algorithm to register the probe face
to a mean face model. And they used the symmetric filling (SF) algorithm to
obtain the complete face. We also compare it with our multiple pose fusion with
SF (i.e., we use our proposed method to frontalize the face and then flip the
existing partial face to complete the entire face).

Our experiment is based on three sets of pose fusion: (1) ±π/2, (2) ±π/3,
and (3) ±π/6. The fusion results of all methods are shown in Fig. 6. We also
use the fused faces of each method as input to our SVM-based face recognition
algorithm to further validate the fusion quality. For the recognition task, our
method achieves 32.69%, 70.05%, and 93.41% rank-1 accuracy, respectively, as
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Fig. 6. Qualitative comparisons of the pose fusion results.

Fig. 7. Our fusion results for various expressions in comparison with the ground-truth
(GT) frontal faces.

presented in Table 1. The rank-1 of 93.41% in the third pose set is the highest
among all comparisons. It is important to note that 3D frontalization algorithms
generally outperform 2D ones, due to the additional depth information and land-
mark detection failures on 3D faces by 2D approaches. Whereas our approach
achieves the best performance especially in cases of large pose changes (for rota-
tion angles larger than π/4), Li et al. [16] suffers from a low recognition rate due
to the failure of ICP in presence of large pose variations. The SF results exhibit
various artifacts (such as holes and duplicated regions) due to face asymmetry
and misalignment. In contrast, our algorithm produces the most visually pleasing
and accurate fusion results.

Face Recognition. Next, we show that our pose fusion algorithm and the CG
feature representation benefit 3D face recognition. We test face recognition w.r.t.
pose and expression variations. For pose variations, our experimental setup is
the same as the pose fusion experiments.
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Table 1. Recognition rate (%) w.r.t. Pose variations

Modality Method ±π/2 ±π/3 ±π/6

2D Hassner et al. [11] 7.69 23.07 50

Zhu et al. [35] 7.69 15.38 46.15

Ours (2D) 32.69 67.03 92.86

3D Li et al. [16] 11.53 28.84 42.30

SF 26.92 59.61 92.31

Ours (2D+3D) 32.69 70.05 93.41

Table 2. Recognition rate (%) w.r.t. Expression variations

Modality Method Neutral Happy Disgust Anger Sad Surprise Fear

2D Hassner et al. [11] 50.00 50.00 55.77 51.92 51.92 40.38 55.77

Zhu et al. [35] 46.15 25.00 32.69 23.84 34.61 26.92 25.00

Ours (2D) 100 88.46 92.31 86.54 98.08 90.38 94.23

3D Emambakhsh et al. [7] 57.69 63.46 63.46 55.77 59.62 59.62 78.85

Li et al. [16] 42.31 36.54 34.62 30.77 38.46 30.77 36.54

SF 92.31 84.82 80.76 75.00 92.31 86.53 90.38

Ours (2D+3D) 100 92.21 88.46 88.46 98.08 90.38 96.15

Recall that Hassner et al. [11] and Zhu et al. [35] are applied 2D face images
as input. For fair comparison, we only use the 2D color features of the gallery
faces for SVM training when comparing with these two methods. The recognition
rate of all methods are presented in Table 1. We can see that our SVM-based
face recognition scheme with 2D color and 3D geometric features achieves a
high recognition rate when the input face is of high quality (e.g., when the
rotation angles are small). The overall FR performance is improved by taking
3D information into account. In presence of extremely large pose variation (e.g.,
±π/2), the recognition rate is downgraded due to fusion errors. However, our
method still achieves the highest rate in this extreme case.

For expression variations, we pick 7 expression categories: neutral, happy,
disgust, anger, sad, surprise, and fear. Recognition is performed in each cate-
gory with the gallery always being the neutral expression. For each expression
category, we use poses of ±π/6 for face fusion and then take the fused face as the
probe. Our fusion results in comparison to the ground-truth (GT) frontal faces
are shown in Fig. 7. To illustrate the robustness of our CG feature extractor with
respect to expression variations, we also compare with Emambakhsh et al. [7],
which is the state-of-the-art approach for handling various expressions. Emam-
bakhsh et al. [7] use features in the nose region for recognition and is therefore
robust to expression variations. However, due to the low-quality of our RGB-D
data, high resolution features in the nose region are largely missing. Their FR
performance is therefore downgraded. All aforementioned methods are tested in
this experiment as well. The recognition rates are presented in Table 2. We can
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see that our method achieves the highest recognition rate for all expressions and
is thus robust to expression variations.

7 Conclusion

In this paper, we presented an efficient 3D face recognition algorithm that is
robust in an uncontrolled environment by fusing multiple pose-varying RGB-
D images. We first frontalized different poses and then fused them to obtain a
front face model with a complete set of facial landmarks. To compensate for the
pose and scale variations, we introduced the UCS transformation to normalize
the gallery face and probe face. To perform face recognition, we extracted 2D
color and 3D geometric features and used them to train a robust SVM classifier.
Through experiments and comparisons with the state-of-the-art methods, we
showed that our method can achieve the highest face recognition rate and is
robust to pose and expression variations. Due to its robustness and efficiency,
our technique can be implemented as a practical system for deployment in an
uncontrolled environment.
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