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Abstract

Recovering the dynamic fluid surface is a long-standing
challenging problem in computer vision. Most existing
image-based methods require multiple views or a dedicated
imaging system. Here we present a learning-based single-
image approach for 3D fluid surface reconstruction. Specif-
ically, we design a deep neural network that estimates the
depth and normal maps of a fluid surface by analyzing the
refractive distortion of a reference background pattern. Due
to the dynamic nature of fluid surfaces, our network uses
recurrent layers that carry temporal information from pre-
vious frames to achieve spatio-temporally consistent recon-
struction given a video input. Due to the lack of fluid data,
we synthesize a large fluid dataset using physics-based fluid
modeling and rendering techniques for network training
and validation. Through experiments on simulated and real
captured fluid images, we demonstrate that our proposed
deep neural network trained on our fluid dataset can re-
cover dynamic 3D fluid surfaces with high accuracy.

1. Introduction
Dynamic fluid phenomena are common in our environ-

ment. Accurate 3D reconstruction of the fluid surface helps
advance our understanding of the presence and dynamics
of the fluid phenomena and thus benefits many scientific
and engineering fields ranging from hydraulics and hydro-
dynamics [5, 20] to 3D animation and visualization [13].
However, it is difficult to tackle this problem with non-
intrusive image-based methods as the captured images are
often severely distorted by the refraction of light that hap-
pens at the fluid-air interface. This is because to extract
invariant and reliable image features under distortion is
highly challenging. Further, the dynamic nature of fluid
flow makes this problem even more challenging as we need
to recover a sequence of 3D surfaces that are consistent both
spatially and temporally to represent the fluid motion.

Classical image-based methods for recovering the 3D
fluid surface typically place a known pattern at the bottom
of the fluid body and use a single or multiple cameras to

Figure 1. Our dynamic fluid surface reconstruction scheme. Given
a sequence of refraction images captured through the dynamic
fluid and the original reference pattern, we develop a deep neural
network to recover spatio-temporally consistent 3D fluid surfaces.

capture the reference pattern through the fluid flow. Pattern
distortions over time or among multiple viewpoints are an-
alyzed for 3D fluid surface reconstruction. Since a single
viewpoint is under-constrained, single image-based meth-
ods often impose additional surface assumptions (e.g., pla-
narity [3, 6, 14], integrability[42, 43], and known average
height [29, 32] etc.). Otherwise, dedicated imaging systems
or special optics (e.g., Bokode [43] and light field probe
[21, 42]) need to be used. Multi-view approaches rely on the
photo-consistency among different viewpoints to perform
3D reconstruction. The seminal work of Morris and Ku-
tulakos [29] extends the traditional two-view geometry to
refractive medium with single deflection assumption. Cam-
era arrays [10] are further adopted for more robust and accu-
rate reconstruction. As being heavily dependent on the ac-
quisition system, these classical methods usually use costly
equipment that requires much effort to build and calibrate.
Applications of these methods are thus limited.

In this paper, we present a learning-based approach for
reconstructing the 3D fluid surface from a single refraction
image. Following the setting similar to the classical meth-
ods, we take refraction image of a reference pattern through
the fluid from a top-down view. We design a deep neural
network that takes the refraction image as input and gener-



alize distortion features for 3D fluid surface reconstruction.
In recent years, deep learning techniques have achieved
great success in solving computer vision problems, includ-
ing depth estimation [11, 12, 23, 34, 27], 3D reconstruction
[7, 19, 40], object detection and recognition [16, 22, 24],
etc. Although most networks assume Lambertian scenes as
limited by existing datasets, there is a rising trend to apply
deep neural networks for interpreting more complex scenes
with reflection, refraction, and scattering. Stets et al. [37]
use a convolutional neural work to recover the shape of
transparent refractive objects and show promising results.
But both their network and dataset are not suitable for dy-
namic fluid surface reconstruction.

Specifically, our fluid surface reconstruction network
(FSRN) consists two sub-nets: 1) an encoder-decoder based
convolutional neural network (FSRN-CNN) for per-frame
depth and normal estimation and 2) a recurrent neural net-
work (FSRN-RNN) for enforcing the temporal consistency
across multiple frames. Our FSRN-CNN compares the re-
fracted pattern image with the original pattern to learn fea-
tures from distortion for depth and normal estimation. We
explicitly account for the physics of refraction in our loss
function for training. Our FSRN-RNN uses the convolu-
tional long-short term memory (conLSTM) layers to learn
temporal dependencies from previous frames, and refines
the depth and normal estimation for the current frame to
enforce spatio-temporal consistency. We train the two sub-
nets separately to reduce the number of network parameters.
Both are trained with per-pixel depth and normal losses as
well as a depth-normal consistency loss. Since no exist-
ing dataset can serve our purpose of fluid surface recon-
struction, we synthesize a large fluid image dataset with
over 40,000 fluid surfaces for network training and valida-
tion. We use a set of fluid equations [8, 36, 38] derived
from the Navier-Stokes for realistic fluid surface modeling.
We implement a physics-based renderer that considers com-
plex light transport to simulate images through refraction.
Our dataset also includes the ground truth depth and normal
maps of the fluid surfaces. We perform experiments on our
synthetic dataset as well as real captured fluid images. Both
qualitative and quantitative results show that our approach
is highly accurate in recovering dynamic fluid surfaces.

2. Related Work
In this section, we briefly review classical image-based

methods for fluid surface reconstruction and the deep learn-
ing techniques that are relevant to our network design.

Classical image-based methods usually measure the re-
fractive distortions of a known background pattern to re-
cover fluid surfaces. We refer the readers to [18] for a com-
prehensive survey on refractive and reflective object recon-
struction. Notably, Murase’s pioneering work [30] analyzes
the optical flow between the distorted image and the origi-

nal one to recover per-pixel normals for water surface. Tian
and Narasimhan [39] develop a data-driven iterative algo-
rithm to rectify the water distortion and recover water sur-
face through spatial integration. Shan et al. [33] estimate
the surface height map from refraction images using global
optimization. As surface reconstruction from a single view-
point suffers from the intractable depth-normal ambiguity
[18, 29], most single image-based methods assume addi-
tional surface constraints such as planarity [3, 6, 14] and
integrability [42, 43]. Morris and Kutulakos [29] first ex-
tend the classical multi-view geometry to refractive medium
and recover the fluid surface using a stereo setup. Ding et
al. [10] further adopt a 3 × 3 camera array for more robust
feature tracking under distortion. Qian et al. [32] develop
a global optimization framework to improve the accuracy
of refractive stereo. Another class of computational imag-
ing approaches directly acquire ray-ray correspondences us-
ing special optics [17, 21, 43] and then triangulate the light
rays for surface reconstruction. Being heavily dependent on
the acquisition system, these classical methods usually use
costly equipment that requires much effort to build and cal-
ibrate. In contrast, our approach allows for more flexible
imaging setup and uses a learning-based algorithm for fluid
surface reconstruction.

Deep learning techniques have achieved unprece-
dented success in numerous computer vision tasks in-
cluding depth/normal estimation [11, 12, 23, 34, 27], 3D
reconstruction[7, 19, 40] and object detection and recog-
nition [16, 22, 24]. The encoder-decoder convolutional net-
work architecture has proven effective in feature generaliza-
tion for various applications. Most relevant networks are the
ones for monocular depth/normal estimation. Eigen et al.
[12] and Liu et al. [26] develop end-to-end trained convo-
lutional networks for depth estimation from a single image.
Wang et al. [41] and Bansal et al. [4] use fully connected
convolutional networks with semantic labeling for single-
image surface normal estimation. Qi et al. [31] present a
network for joint depth and normal estimation that incor-
porates geometric constraints between depth and normal.
However, all these networks assume Lambertian scenes be-
cause they are trained on datasets that are mostly composed
of diffuse objects (e.g., NYU Depth [9] and KITTI [15]).
They are, therefore, not applicable to recover fluid surfaces
with reflective and refractive reflectance. Most recently, Li
et al. [25] present a network to un-distort the refractive im-
age of an underwater scene. Stets et al. [37] use convolu-
tional network to recover the shape of transparent refrac-
tive objects. But these networks are not suitable for fluid
surface reconstruction due to limitations of their datasets.
In this work, we create a large physics-based fluid surface
dataset with ground truth depth and normal. In addition,
our network use recurrent layers [28] to capture the tempo-
ral dynamics of fluid flows.



Figure 2. The setting of our fluid surface reconstruction problem.
Given a refraction image (I) viewed from the top through the fluid
flow and the original background pattern (Ir), we aim at recover-
ing the fluid surface in form of depth and normal maps. Our net-
work explicitly accounts for the physics of refraction in the train-
ing loss function.

3. Fluid Surface Reconstruction Network
In this section, we present our fluid surface reconstruc-

tion network (FSRN). We first introduce the setting of our
fluid surface reconstruction problem, and then describe our
network structure and the generation of our physics-based
fluid dataset.

3.1. Problem Definition

We represent the dynamic 3D fluid surfaces as a temporal
sequence of the surface depths {zt|t = 1, 2, ...}, where t is
the time instant and zt = f t(x, y) is the height field of the
fluid surface at t. As is shown in Fig. 2, given a reference
pattern Ir placed underneath the fluid surface at the z = 0,
we can map Ir to a refraction image It as being distorted
by the refraction that occurs at the fluid surface zt:

It = Φ(Ir, z
t). (1)

where Φ is the mapping function that follows the physics of
refraction (i.e., the Snell’s law).

Given a sequence of the refraction images {It|t =
1, 2, ...} and the reference pattern Ir, we aim to estimate the
dynamic fluid surfaces {zt|t = 1, 2, ...}. Practically, It can
be captured by an orthographic camera that looks at the fluid
surface from the top and Ir is assumed known in advance.
In our network, we estimate both the depth map and the
normal map of a fluid surface as they can be independently
inferred from the refractive distortions. Since they are also
geometrically correlated, the depth and normal estimations
can be further refined with a consistency loss. Finally, we
can generate 3D fluid surface meshes from our estimated
depths and normals through Delaunay triangulation.

3.2. Network Architecture

Our fluid surface reconstruction network (FSRN) con-
sists of two sub-nets: 1) an encoder-decoder based convo-

Figure 3. The workflow of our FSRN. The FSRN-CNN estimates
depth and normal maps given a refraction image and the reference
pattern. Its output is then structured into a temporal sequence and
fed into the FSRN-RNN for refinement by enforcing the temporal
consistency.

lutional neural network (FSRN-CNN) for per-frame depth
and normal estimation and 2) a recurrent neural network
(FSRN-RNN) for enforcing the temporal consistency across
multiple frames. Fig. 3 shows the workflow of our FSRN
and Fig. 4 shows its architecture.

FSRN-CNN. Our CNN subnet takes in the refraction im-
age It and the reference pattern Ir to estimate the the depth
map Dt and normal map N t of the fluid surface at time
t (superscript t indicates the time instance). It uses the
encoder-decoder structure to generalize features from re-
fractive distortion. The encoder is consisted of stacked con-
volutional layers with max-pooling layers. The decoder is
made up of transpose convolutional layers with skip con-
nections (see Fig. 4). Specifically, our decoder has two
branches: one predicts normalized depth and normal maps
(Dt and N t), and the other predicts the absolute ranges of
depth and normal maps (Rt

D and Rt
N ). In order to gener-

alize scale-invariant features, we normalize our depth and
normal maps to the range of

[
0, 1
]
. The absolute ranges are

therefore critical to restore the actual scale of the fluid sur-
face. To better exploit the geometric consistency between
depth and normal, we use a common set of decoding layers
for both depth and normal estimation. This subnet is end-
to-end trained with loss functions described in Sec. 3.3.

FSRN-RNN. Our RNN subnet refines the depth and nor-
mal estimation by enforcing the temporal consistency. We
concatenate multiple scaled depth and normal maps esti-
mated by the FSRN-CNN as temporal sequences: {Dt|t =
t, t− 1, t− 2, ...} and {N t|t = t, t− 1, t− 2, ...}. The tem-
poral sequences of depth and normal maps are then used
as input to feed into the FSRN-RNN. The output is refined
depth and normal maps at the current time t. We use con-



Figure 4. The overall architecture of our FSRN. Please refer to the supplementary material for more detailed parameters of our network.

volutional long-short term memory (conLSTM) layers [35]
to construct our recurrent network. The conLSTM layers
transmit hidden states from previous time frames to learn
the temporal dependencies. This subnet therefore enforces
temporal consistency in our reconstruction as well as en-
hances the estimation accuracy. The ablation study and real
experiment results in Sec. 4 confirm the effectiveness of us-
ing the recurrent layers. This subnet is separately trained
from the FSRN-CNN to reduce the number of network pa-
rameters. The loss functions are described in Sec. 3.3.

3.3. Loss Functions

Depth Loss. We use a per-pixel depth loss to compare
our predicted depth map (D) with the ground truth one
(D̂). Similar to [11], we consider the L2-norm difference
and scale-invariant difference (the first and second term in
Eq. 2). The scale-invariant difference term panelize dif-
ferences of opposite directions. It therefore preserves the
shape of the surface regardless of the scale. In addition, we
also consider a gradient term (the third term in Eq. 2) that
takes the four-directional differences to favor smoother pre-
diction. Let d(p) = D(p) − D̂(p) be the per-pixel depth
difference (where p ∈ [1,M ] is the pixel index with M as
the total number of pixels), our depth loss Ld is defined as

Ld(D, D̂) =
1

M

∑
p

d(p)2 − 1

2M2
(
∑
p

d(p))2

+
1

M

∑
p

∑
i

δi(p)
2 (2)

where i indicate the indices of four neighboring pixels of
p and δi(p) = d(i) − d(p) represents the four-directional
difference of d(p).

Normal Loss. As we predict our depth and normal maps
in the same decoder branch, the x, y, and z components
of the normal map are estimated in three separate passes.
Our normal loss function is similar to the depth loss except
that the computation is extended to three channels. We also
exclude the third smooth term because the normals tend to
have more drastic changes than depth. Given the predicted
normal map N and the ground truth one N̂ , our normal loss
Ln is defined as

Ln(N, N̂) =
1

M

∑
p

n(p)2 − 1

2M2
(
∑
p

n(p))2 (3)

where n(p) = N(p)− N̂(p) is the per-pixel difference.

Depth-Normal Loss. Since depth and normal are geo-
metrically correlated, we use a depth-normal loss to enforce
consistency between our depth and normal estimations.
Specifically, given the predicted depth mapD, we convert it
to its corresponding normal map (Nd) by taking the partial
derivatives: Nd(p) = [∂D(p)/∂x, ∂D(p)/∂y,−1]>. We
then normalize the normal vectors to unit lengths and con-
vert the ranges of their x, y, and z components to

[
0, 1
]
.

We then use the normal loss (Eq. 4) to compare the depth-
converted normal map (Nd) with the ground truth normal
map N̂ . Our depth-normal loss Ldn is then defined as

Ldn(Nd, N̂) =
1

M

∑
p

n′(p)2 − 1

2M2
(
∑
p

n′(p))2 (4)

where n′(p) = Nd(p)− N̂(p) is the per-pixel difference.

Refraction Loss. We use a refraction loss to directly ac-
count for the physics of refraction that occurs at the fluid-air
interface. We trace a refraction image using the predicted
depth and normal maps and the original reference pattern.
We then compare the traced image with the input refraction
image to minimize their difference. Specifically, we assume



all incident rays ~s1 to the fluid surface are [0, 0, 1]> as we
assume an orthographic camera with top-down view. Given
a predicted fluid surface normal ~n, we can compute the re-
fracted ray ~s2 by

~s2 =
nr

ni

[
~n× (−~n× ~s1)

]
− ~n

√
1− (

nr

ni
)2(~n× ~s1)2 (5)

where ni and nr are the refractive indices of air and water.
We then use the predicted depth values to propagate ~s

and intersect with the reference pattern. The colors of the
intersection points are returned to form our predicted re-
fraction image (I). We then use the L2-norm difference to
compare I with the ground truth refraction Î , which is the
input to our network. Our refraction loss Lr is defined as

Lr(I, Î) =
1

M

∑
p

(Î(p)− I(p))2 (6)

Scale Loss. As our CNN subnet also predicts the absolute
ranges of depth and normal maps in order to restore them
to the actual scale, we simply use the L2-norm difference to
compare our predicted ranges (RD andRN )with the ground
truth ones (R̂D and R̂N ). Our ground truth ranges are ob-
tained by taking the minimum and maximum values of the
depth and normal maps 1 (e.g., R̂D = [min(D),max(D)]).
Our scale loss Ls is defined as

Ls(RD,N , R̂D,N ) =
1

M

∑
p

(RD,N (p)− R̂D,N (p))2 (7)

Total Losses. Our two sub-nets are trained separately to
reduce the number of network parameters. The total losses
for FSRN-CNN (LCNN) and FSRN-RNN (LRNN) are com-
binations of the above described losses

LCNN = α1Ld + α2Ln + α3Ldn + α4Lr + α5Ls (8)

LRNN = β1Ld + β2Ln + β3Ldn (9)
α1,...,5 and β1,2,3 are weighted factors and they are sepa-
rately tuned for each subnet. Notice that we only use the
refraction loss in FSRN-CNN as this computation is ex-
pensive and it’s more efficient to apply it on a single frame
rather than a temporal sequence. We also exclude the scale
loss in FSRN-RNN because the inputs to this subnet have
already been scaled to their actual ranges.

3.4. Physics-based Fluid Dataset

It is challenging to acquire fluid dataset with ground truth
surface depths and normals using physical devices. We re-
sort to physics-based modeling and rendering to synthesize
a large fluid dataset for our network training. We use fluid
equations derived from the Navier-Stokes to model realis-
tic fluid surfaces and implement a physics-based renderer
to simulate refraction images.

1For the normal map, we treat the three channels separately but in the
same manner.

Figure 5. Sample images from our fluid dataset. From top to bot-
tom, we show waves simulated by the shallow water equation,
Grestner’s equation, Gaussian equation, and sinusoidal equation.
The patterns used are checkboard, tiles, concrete, and perlin noise.

Specifically, we use an Eularian mesh-based fluid sim-
ulation to model fluid surfaces. We use a variety of fluid
equations derived from the Navier-Stoke to account for the
versatility of natural fluid flows. The fluid equations we use
include The shallow water equations [8], Grestner’s equa-
tions [38], Gaussian equations, and sinusoidal equations.
We choose these wave equations as they model different be-
haviors of fluid waves. The shallow water equations are a
set of partial differential equations derived from the Navier-
Stokes. They describe in-compressible property of fluid
where the mass and linear momentum is conserved. The
Grestner’s equations are widely used in computer graph-
ics to simulate ocean waves. We use them to model fluid
with relatively large volumes. The Gaussian equations are
used for creating water ripples with damping effects. The
sinusoidal equations are used to model linearly propagating
waves. More details of these waves equations can be found
in the supplementary material. We use weighted linear com-
bination of these equations to simulate the 3D fluid surfaces
that are used in our dataset.

To render refraction images, we implement a ray tracer
that considers the refraction of light. We setup our scene
following the configuration shown in Fig. 2, where the cam-
era, 3D fluid surface and the reference pattern are center-
aligned. We trace rays from an orthographic camera and
use Eq. 5 to compute the refracted rays (where we assume
the indices of refraction for air and fluid are 1 and 1.33).
The refracted rays are then traced to the reference pattern to
form the refraction image.

Our dataset contains over 45,000 refraction images (75
fluid sequences) with the ground truth depth and normal
maps. We also use a variety of reference patterns to en-



rich our dataset, which include noise patterns (e.g., Perlin,
Simplex, and Worley), checkerboards with different sizes,
and miscellaneous textures (e.g., bricks, tiles etc.). Sample
images from our dataset are shown in Fig. 5.

4. Experiments
In this section, we evaluate our approach through both

synthetic and real expriments.

4.1. Network Training

We implement our FSRN in TensorFLow [1] with around
1.7 million trainable parameters. All computations are per-
formed in a computer with Xeon E5-2620 CPU and two
NVIDIA GTX 1080 Ti GPUs. We segment our fluid dataset
into 40,000 training images, 5,000 validation images and
1000 testing images. We set the parameters α1,...,5 = 0.2,
β1,2 = 0.4, and β3 = 0.2 for our total loss functions. It
takes around 6 hours to train our network.

Our FSRN is trained in two steps. First, we train the
FSRN-CNN with our fluid dataset. We process the train-
ing data by normalizing the input (i.e., refraction image,
depth and normal maps) to the range [0, 1] slice-by-slice
and save their true scale ranges. We use the Adam opti-
mizer to train the network. We use batch size 32 for both
training and validation. We initialize the learning rate as
10−3 and decrease it by half after 15 epochs. We train the
network for 35 epochs till convergence. Second, we train
the FSRN-RNN with a temporal sequence of re-scaled pre-
dictions from FSRN-CNN as input. Here we consider three
consecutive frames. We use the Adam optimizer to train this
network with a fixed learning rate of 10−3. The batch size
is 32 for both training and validation. We train the network
for 15 epoch till converge.

4.2. Experiments on Synthetic Data

We first evaluate our approach on our synthetic fluid
dataset. Our validation set contains 5,000 refraction images
(20 unique dynamic fluid videos) that doesn’t overlap with
the training set. These data is rendered with various types of
reference patterns. Our fluid surface reconstruction results
are shown in Fig. 6. More dynamic fluid video results can
be found in our supplementary material. We can see that
our recovered fluid surfaces are highly accurate and well
preserve the wave structure of the ground truths.

We also perform quantitative evaluation in comparison
with existing methods. As there are not many networks
designed for fluid surface reconstruction, we choose two
networks to compare with: 1) the RefractNet by Stets et
al. [37], which is a CNN designed to reconstruct transpar-
ent refractive objects and 2) the DenseDepth by Alhashim
and Wonka [2], which is a latest state-of-the-arts network
for single-image depth estimation but designed for Lamber-
tian scenes. As the DenseDepth doesn’t perform well in

Figure 6. Fluid surface reconstruction on synthetic data.

Methods
Error metric Accuracy metric

RMSE Abs Rel ρ<1.25ρ<1.252ρ<1.253

DenseDepth [2] 0.851 0.408 0.016 0.033 0.051
RefractNet [37] 0.303 0.274 0.226 0.422 0.584

FSRN-S 0.262 0.247 0.338 0.572 0.710
FSRN-CNN 0.128 0.105 0.557 0.803 0.896

FSRN (Ours) 0.126 0.098 0.562 0.812 0.901

Table 1. Quantitative comparison with existing methods on depth
estimation. We highlight the best performance in bold.

our task, we didn’t pick other Lambertian scene-based depth
estimation network for comparison. We use five error met-
rics following [12] to evaluate our prediction: the root mean
square error (RMSE), the absolute relative error (Abs Rel),
and three threshold accuracies (ρ < 1.25, 1.252, 1.253).
Formulas for computing these error metrics can be found
in our supplementary material. As both the RefractNet and
DenseDepth take a single image as input, for fair compari-
son, we also implement a single-input variation of our net-
work (FSRN-S) that only take the refraction image (without
the reference pattern) by not considering the refraction loss.
We also compare with the depth prediction directly obtained
from FSRN-CNN (without using the FSRN-RNN). All net-
works are trained on our fluid dataset. The quantitative
comparison results are shown in Table 1. We can see that
our FSRN out-performs the existing methods in all error
metrics. We also show the visual comparison of predicted
depth map in Fig. 7. We can see that the Lambertian scene-
based method (DenseDepth) is unable to produce meaning-
ful prediction. Although the RefractNet can recover some
ripple waves, their overall estimation is highly noisy and
inaccurate. In contrast, our FSRN can estimate highly ac-
curate depth for fluid surface. And even without using the
reference pattern and recurrent layers, our prediction still
out-performs the existing methods.

Ablation Study. We perform ablation study to demon-
strate the effectiveness of loss functions. In particular, we
create three variations of our network: 1) FSRN-CNN1

that only uses the basic depth and normal losses; 2)



Figure 7. Visual comparison with existing methods on depth estimation. All depth maps are normalized to [0, 1] for fair comparison.

Depth Estimation

Methods
Error metric Accuracy metric

RMSE Abs Rel ρ<1.25ρ<1.252ρ<1.253

FSRN-CNN1 0.198 0.184 0.398 0.684 0.833
FSRN-CNN2 0.183 0.175 0.469 0.707 0.848
FSRN-CNN3 0.137 0.112 0.551 0.790 0.881
FSRN-CNN 0.128 0.156 0.557 0.803 0.896

FSRN (Ours) 0.126 0.098 0.562 0.812 0.901
Normal Estimation

Methods
Error metric Accuracy metric

RMSE Abs Rel ρ<1.25ρ<1.252ρ<1.253

FSRN-CNN1 0.118 0.095 0.577 0.707 0.794
FSRN-CNN2 0.112 0.094 0.578 0.715 0.799
FSRN-CNN3 0.110 0.088 0.580 0.721 0.813
FSRN-CNN 0.098 0.108 0.051 0.759 0.864

FSRN (Ours) 0.079 0.051 0.693 0.829 0.912

Table 2. Depth and surface normal estimation measurements for
ablation study. We highlight the best performance in bold.

FSRN-CNN2 that adds the depth-normal loss; and 3)
FSRN-CNN3 that also adds the refraction loss. We also
compare with the FSRN-CNN subnet without using the re-
current layers. FSRN is our full proposed network that uses
both sub-nets with the complete set of loss functions. The
quantitative comparison results for both depth and normal
estimations are shown in Table 2. We can see that perfor-
mance of our network gradually improves as we incorporate
more loss functions. This indicates that our depth-normal
loss, refraction loss, and the recurrent subnet are effective
and help improve the accuracy of prediction. We refer the
readers to our supplementary material for visual compar-
isons of our ablation study.

4.3. Experiments on Real Data

We also perform real experiment to evaluate our net-
work. Our experimental setup is shown in Fig. 8. We use
a water tank with size 12 × 24 × 18 inches for wave simu-
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Figure 8. Our experimental setup for real data acquisition. Left:
Sample reference patterns that we use for the real experiments;
Right: We setup a camera on top of the fluid tank to capture re-
fraction images of the reference pattern.

lation. Our reference pattern is placed at the bottom of the
tank. We use a variety of patterns (e.g., Perlin noise, pool
liners, river rocks, and sands etc.) to test the robustness of
our approach. We mount a machine vision camera (FLIR
GS3-U3-32S4C-C) to the top to record videos of the water
wave. As we assume orthographic camera model, we mount
the camera high (around 50cm to the tank bottom) and use
a long focal length lens (50mm, Horizontal FoV 8◦) to min-
imize the perspective effect. We also use a small aperture
size (f/8) to extend the depth-of-field. We further calibrate
the camera [44] . We use the camera intrinsic parameters to
remove lens-related distortions and the extrinsic parameters
to compensate camera rotations such that the image plane is
frontal parallel to the fluid surface. We capture the dynamic
fluid video with the reference pattern as background at a
frame rate of 121fps and use fast shutter speed 1ms to re-
duce motion blur. We therefore place four LED light panels
to surround the water tank in order to have sufficient light.
We finally crop the regions with background pattern from
our raw images and use them as input to our network.



Figure 9. Reconstruction results on real data. Complete video re-
sults can be found in the supplementary material.

Figure 10. Comparison between FSRN-CNN and our full network
FSRN (with RNN).

Our real fluid surface reconstruction results are shown
in Fig. 9. We can see that our reconstructions are consis-
tent with the refractive distortions. Please see the supple-
mentary material for videos of recovered dynamic fluid sur-
faces. We also compare the 3D reconstruction results us-
ing FSRN-CNN and our full network FSRN (with the RNN
subnet). The reconstruction results for three consecutive
frames are shown in Fig. 10. We can see that the FSRN-
CNN results obviously change more abruptly while our full
network produces a smoother propagation. This indicates
that our FSRN-RNN can effectively enforce the temporal
consistency in our reconstruction. We also perform re-
rendering experiments to demonstrate the accuracy of our
approach. We use our recovered fluid surface to re-render
the distortion image as seen by the camera. We compare
our re-rendered image with the actually captured refraction
image (see Fig. 11). We can see that the pattern distortions
are highly similar.

4.4. Discussions

Our network is able to achieve good performance on both
synthetic and real fluid data although it is trained on a syn-
thetic dataset. This could be due to two reasons: 1) our
physics-based fluid dataset preserve characteristics of nat-
ural fluid flows thanks to the diversity of fluid equations
we use to model the fluid surface and 2) we consider the
physics of refraction in our loss function for more accu-

Figure 11. Re-rendered refraction image using our reconstructed
fluid surface in comparison with the real captured image with
zoom-in views.

rate reconstruction. However, the refraction loss requires
to take the original reference pattern as input. This limits
the application of network in outdoor fluid scenes. We can
overcome this problem by incorporating a network similar
to [25] that first estimates the undistorted pattern and then
use it for computing the refraction loss.

In addition, we observe that our network produce more
accurate prediction on noisy pattern (e.g., sand and cement
textures) than on regular patterns (e.g., checkboard and pool
liners). This is because these noisy patterns contain more
high-frequency components that better preserve the refrac-
tive distortion features.

5. Conclusions

We have presented a deep neural network (FSRN) for dy-
namic fluid reconstruction from refraction images. We use a
convolutional network for depth and normal estimation, and
a recurrent network for enforcing the temporal consistency
of the dynamic fluid. We consider the depth-normal con-
sistency and the physics of refraction in our loss functions
for training. We have also created a large fluid dataset us-
ing physics-based fluid modeling and rendering. Through
both synthetic and real experiments, we have shown that
our network can recover fluid surfaces with high accuracy.
One future direction is to generalize our network to arbi-
trary background to eliminate the use of a reference pat-
tern. We plan to further extend our network to handle more
challenging fluid scenes with reflection and scattering. As
there’s very few work on applying deep learning to non-
Lambertian scene, we expect our network and dataset can
serve as baseline for studying fluid scenes.
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