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This supplementary document consists of three sections. In Section 1, we provide detailed information on our network
structure. In Section 2, we provide details on creating the synthetic dataset. Specifically, we provide the wave equations for
simulating the underwater images and describe how the distortion level is quantified. In Section 3, we provide more details
on our experimentation. Firstly, we provide the equations for computing the error metrics. Secondly, we show additional
visual results of our ablation studies. Thirdly, we then show the visual comparisons on various testing datasets. And lastly,
we show additional results for the “in-the-wild” experiments.

1. Network Architecture
Here we provide the detailed architecture of our network. Our distortion guided network (DG-Net) consists of two sub-

nets: 1) a convolutional network for estimating the refractive distortion from 3 consecutive refracted images (Dis-Net) and
2) a distortion-guided GAN for generating the undistorted underwater image (DG-GAN). Table 1 and Table 2 provide de-
tailed network architecture of the two subnets. In the tables, Conv, Deconv and BN refer to convolution layers, transpose
convolution layers, and batch normalization.

Input Filters Output Shape

E
nc

od
er

Input 128× 128× 3
Conv+Conv, ReLU 18@2× 2× 6 128× 128× 18
Maxpool Stride = 2 64× 64× 18
Conv+Conv, ReLU 36@2× 2× 18 64× 64× 36
Maxpool Stride = 2 32× 32× 36
Conv+Conv+Conv, ReLU 72@2× 2× 36 32× 32× 72
Maxpool Stride = 2 16× 16× 72
Conv+Conv+Conv, ReLU 144@2× 2× 72 16× 16× 144
Maxpool Stride = 2 8× 8× 144
Conv+Conv+Conv, ReLU 144@2× 2× 144 8× 8× 144
Maxpool Stride = 2 4× 4× 144

D
ec

od
er

Deconv+Deconv 72@4× 4× 144 8× 8× 72
Output5 8× 8× 3
Concat+Deconv+Deconv 36@6× 6× 72 16× 16× 36
Output4 16× 16× 3
Concat+Deconv+Deconv 18@4× 4× 36 32× 32× 18
Output3 32× 32× 3
Concat+Deconv+Deconv 9@4× 4× 18 64× 64× 9
Output2 64× 64× 3
Concat+Deconv+Deconv 3@3× 3× 9 128× 128× 3
Output1 128× 128× 3

R
N

N

Input 3× 128× 128× 3
convLSTM, BN 3@2× 2× 3 3× 128× 128× 3
convLSTM, BN 3@2× 2× 3 128× 128× 3
Output 128× 128× 3

Table 1. Detailed architecture of the Dis-Net.
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Input Filters Output Shape

G
en

er
at

or

Input 128× 128× 3
Conv, Stride = 2, BN, LeakyReLU 64@4× 4 64× 64× 64
Conv, Stride = 2, BN, LeakyReLU 128@4× 4 32× 32× 128
Conv, Stride = 2, BN, LeakyReLU 256@4× 4 16× 16× 256
Conv, Stride = 2, BN, LeakyReLU 512@4× 4 8× 8× 512
Conv, Stride = 2, BN, LeakyReLU 512@4× 4 4× 4× 512
Conv, Stride = 2, BN, LeakyReLU 512@4× 4 2× 2× 512
Conv, Stride = 2 512@4× 4 1× 1× 512
Concat+Deconv, Stride = 2, BN, ReLU 512@4× 4 2× 2× 512
Concat+Deconv, Stride = 2, BN, ReLU 512@4× 4 4× 4× 512
Concat+Deconv, Stride = 2, BN, ReLU 512@4× 4 8× 8× 512
Concat+Deconv, Stride = 2, BN, ReLU 256@4× 4 16× 16× 256
Concat+Deconv, Stride = 2, BN, ReLU 128@4× 4 32× 32× 128
Concat+Deconv, Stride = 2, BN, ReLU 64@4× 4 64× 64× 64
Deconv, Stride = 2 3@4× 4 128× 128× 3
Output1 128× 128× 3

D
is

cr
im

in
at

or

Input1 128× 128× 3
Input2 128× 128× 3
Concat 128× 128× 6
Conv, Stride = 2, BN, ReLU 64@4× 4 64× 64× 64
Conv, Stride = 2, BN, ReLU 128@4× 4 32× 32× 128
Conv, Stride = 2, BN, ReLU 256@4× 4 16× 16× 256
Conv, Stride = 2, BN, ReLU 512@4× 4 8× 8× 512
Conv, BN, ReLU 512@4× 4 8× 8× 512
Conv 1@4× 4 8× 8× 512
Activation+Output 1

Table 2. Detailed architecture of the DG-GAN

2. Synthetic Underwater Image Dataset
In this section, we show samples from our synthetic underwater image dataset. Our dataset contains around 63k dis-

torted refraction images, generated from 6354 unique reference pattern. Most of the reference patterns are selected from
the Describable Textures Dataset (DTD) [1]. Except that, we include additional ∼ 500 various texts images. We render 10
consecutive frames per wave. For each refraction image, we provide the ground truth distortion-free image (the reference
pattern), the ground truth distortion map, and the ground truth height map of the wave. In Fig. 1, we show sample data from
our dataset. The three consecutive frames are used as input to our algorithm.

2.1. Water Wave Simulation

We use the physics-based dynamic water wave simulation software presented in [8]. To show that our method is robust
to different types of water turbulence, we simulate three types of waves: ripple waves, ocean waves, and Gaussian waves. In
the following, we describe the simulation equations used for each type of wave.

Ripple waves. We create water ripples with damping effects. Let zri be the fluid surface height, the equation can be written
as

zri = A exp(−x
2 + y2

2σ2
) sin(ωt) (1)

where A is the wave amplitude, σ is the damping factor, and ω is the phase factor.

Ocean waves. The Grestner’s wave equations are are widely used in computer graphics to simulate ocean waves [8, 7]. We
use them to model fluid with relatively large volumes. In our implementation, we compute the Grestner’s equation with its
Fast Fourier Transform (FFT) form. The FFT-based representation of the equation can be written as

zgr =
∑
m

∑
n

z̃gr exp(j2π(mx+ ny)) (2)
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where z̃gr is the Fourier amplitude, j is the imaginary unit,m and n are integers bounded by [−M/2,M/2] and [−N/2, N/2]
(M andN are the dimensions of the mesh grid). We use the Phillips spectrum [7] as our height amplitude Fourier component
(z̃gr) that determines the structure of the fluid surface.

Gaussian waves. For Gaussian waves, we assume that the maximum water surface fluctuation is small compared to the
height (h0) of the fluid in the stable condition. This fluctuating water surface is governed by the wave equation:

zga(t+ 1) = 2× zga(t) + c2∇− zga(t− 1) (3)

Note that zga(t = 0) = 0 and ∇ is a Laplacian operator related to zga(t). Here, c =
√
gh0 is the speed of the wave (g is the

gravity).
Fig. 1 shows exemplary water turbulence images of different types of waves. We also show the height maps and distortion

maps, which are highly relevant to the water wave fronts.

Figure 1. Sample images of our synthetic underwater image dataset. From left to right, we show the ground truth (GT) distortion-free
image, GT distortion map, GT height map, and three consecutive distorted images.
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2.2. Distortion Levels

In order to evaluate the robustness of our method with respect to the strength of distortion, we categorize our underwater
images into seven distortion levels according to their distortion maps. Specifically, we quantify the distortion levels using the
averaged magnitude of the distortion map. Given a distortion W = {wi}Mi=1 (where wi ∈ R2 is per-pixel distortion vector
and M is the total number of pixels), the distortion level dl of its corresponding refraction image is:

dl = d
1

M

M∑
i=1

‖wi‖2e (4)

where d·e is the ceiling operator. In our dataset, dl = 7 is the largest distortion level (dl = 0 indicates distortion-free). We
show exemplary images in selected distortion level in Fig. 2.

Figure 2. We show three exemplary images of different distortions levels (Top) and the corrected output by our method (Bottom).

3. Additional Details on Experimentation
3.1. Evaluation Metrics

We use four standard image quality or similarity metrics for quantitative evaluation: 1) Peak Signal-to-Noise Ratio (PSNR)
[3], 2) Structural Similarity Index (SSIM) [2], 3) Sum Squared Difference (SSD) [6], and 4) SSD in Gradient (SSDG) [6].
Let Y be the ground truth image and Ŷ be our estimated image. The total number of pixels is M for both Y an Ŷ . We use Y
as reference to evaluate the quality of Ŷ .

PSNR. The PSNR computes the ratio between the maximum possible value (or power) of a signal and the power of corrupting
noise that affects the quality of its representation. It is computed as:

PSNR = 10 log10

 R2

1
M

∑
p
(Y (p)− Ŷ (p))2

 (5)

where p ∈ [1,M ] is the pixel index and R is the maximum possible pixel value of image (e.g., when using an 8-bit image,
R = 255).

SSIM. The SSIM is a perceptual metric that is used to quantify the image quality. It assesses the visual impact of three key
features of an image: luminance, contrast, and structure. It is computed as a multiplicative combination of the three terms:

SSIM = [l(Y, Ŷ )]α · [c(Y, Ŷ )]β · [s(Y, Ŷ )]γ (6)

where l(Y, Ŷ ) =
2µY µŶ +C1

µ2
Y µ

2
Ŷ
+C1

, c(Y, Ŷ ) =
2σY σŶ +C1

σ2
Y σ

2
Ŷ
+C2

, and s(Y, Ŷ ) =
σY Ŷ +C3

σY σŶ +C3
represent the luminance, contrast, and

structure terms, respectively. µY , µŶ , σY , σŶ , and σY Ŷ are the local means, standard deviations, and cross-covariance for
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images Y , Ŷ . When α = β = γ = 1 and C3 = C2/2, the index simplifies to:

SSIM =
(2µY µŶ + C1)(2σY Ŷ + C2)

(µ2
Y µ

2
Ŷ
+ C1)(σ2

Y σ
2
Ŷ
+ C2)

(7)

SSD. The SSD evaluates the per-pixel difference between Ŷ and Y . It is computed as:

SSD(Y, Ŷ ) =
1

M

∑
p

[Y (p)− Ŷ (p)]2 (8)

where p ∈ [1,M ] is the pixel index.

SSDG. The SSDG computes the SSD in terms of the intensity gradients. It is computed as:

SSDG(Y, Ŷ ) = SSD(Yx, Ŷx) + SSD(Yy, Ŷy) (9)

where Yx, Ŷx, Yy , and Ŷy are the horizontal and vertical gradients for Y and Ŷ , respectively.

3.2. Visual Results of Ablation Studies

Fig. 3 we show the visual results of effect of the physical constrains. Specifically, we compare our full network (DG-
Net) with the Dis-Net (without the distortion-guided GAN), and three variants of the Dis-Net: 1) Dis-NetW , which removes
the last two terms of LW (notice that these terms are constrained by our physical model); 2) Dis-NetR, which removes the
refraction loss LR in Dis-Net; and 3) Dis-NetC , which removes the consistency loss LC in Dis-Net. We can see that all loss
terms contribute to improve our network performance.

Figure 3. Qualitative ablation on physics-based loss terms. We compare the results from different ablative sub-networks to the ground truth.

3.3. Visual Comparative Results

Fig. 4 shows the visual comparion of our method with Li et al. [5] in our synthetic dataset (SynSet). We compare both the
estimated distortion map and the distortion-free images. We can see that our method achieves better accuracy on both as we
account for the temporal consistency by three images as input. Notice that the model-based methods [9] and [6] cannot be
applied on the SynSet as they need long input sequence.

Fig. 5 shows the visual comparisons on Tian’s real dataset “Brick”, “Small”, and “Tiny” [9]. We compare with Tian et al.
[9], Oreifej et al. [6], Li et al. [5], and James et al. [4]. Fig. 6 shows the qualitative comparison with all the above methods
on ThapaSet [8].

We see that our method achieves better accuracy and visually pleasing results with shorter input sequence of 3 frames
when compared with 10 frames input to Tian et al. [9], Oreifej et al. [6], James et al. [4] and single input to Li et al. [5]. Here
in Fig. 7, we further compares our method with Tian et al. [9], Oreifej et al. [6], James et al. [4] when 61 frames are taken as
input. We see that our method can still obtain comparable results.
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Figure 4. Visual comparison with [5] on the SynSet. We compare both the estimated distortion map and distortion-free image. We see that
our predictions are robust to different types of wave fronts.
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Figure 5. Visual comparison with the state-of-the-arts on the real captured TianSet et al. [9]. Here Tian-10, Oreifej-10, and James-10 refer
to using the 10 frames of the “Middle”, “Small”, “Tiny” sequences from TianSet as input to the methods [9], [6], and [4], respectively.

Figure 6. More visual comparative results on real underwater image dataset provided by Thapa et al. [8]. Here Tian-10, Oreifej-10, and
James-10 refer to using the 10 frames of the three sequences from ThapaSet as input to the methods [9], [6], and [4], respectively.
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Figure 7. More visual comparative results on real underwater image dataset provided by Tian et al. [9], James et al. [4], Thapa et al. [8],
and our real captured set. Note that all the comparision methods take 61 frames as input, i.e., Tian-61, Oreifej-61, and James-61 refer to
using the 61 frames as inputs to the methods [9], [6], and [4], respectively. Our method takes only 3 images as its input.
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3.4. Additional “In-The-Wild” Results

Since our method just requires three input frames, the images can easily be taken of a dynamic scene in either burst
mode or a video at ∼ 60-120 fps. These settings are readily available in any modern day cell phone or drones. Fig. 8 is a
real outdoor pool scene. It is captured by the lightweight DJI Mavic Mini drone. Fig. 9 is a real indoor aquarium setting
where we see highly mobile fishes. It is captured with a cell phone camera. For more dynamic results, please refer to our
supplementary video.

Figure 8. Visual results on Pool Scene taken with drone. The first column represents the distorted input image, the second column is
our distortion-map estimation, the third column is the distortion-free image estimated by our Dis-Net and the last column is our final
distortion-free image estimation from DG-GAN.
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Figure 9. Visual results on aquarium scene with one big fish (top two rows) and multiple tiny fishes (middle two rows) swimming, and
aquatic plants (bottom two rows). We use the white arrows to point to the tiny fishes. The first column represents the distorted input image,
the second column is our distortion-map estimation, the third column is the distortion-free image estimated by our Dis-Net and the last
column is our final distortion-free image estimation from DG-GAN.
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