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In this supplementary material, we provide details on our
network architecture (Section 1), and synthetic air turbu-
lence simulation (Section 2). We show more ablation study
results on different numbers of inputs and the Fourier fea-
ture mapping parameters (Section 3). Lastly, we include
more visual comparison results with the state-of-the-arts on
the synthetic air and water turbulence (Section 4).

1. Network Architecture

In this section, we provide the detailed architecture of
our non-rigid distortion removal network. Our network has
two main component the grid deformer Gθ and the image
generator Iφ. Table 1 provides detailed network architec-
ture of the two subnets. In the tables, Conv, BN, ReLU
refer to convolution layers, batch normalization and Recti-
fied Linear Unit; γ refers to the GRFF position encoding
component.

Input Filters Output Shape

Gθ

Input 128× 128× 2
Conv, ReLU, BN 256@1× 1 128× 128× 256

Conv, ReLU 256@1× 1 128× 128× 256
Conv, ReLU 256@1× 1 128× 128× 256
Conv, Tanh 2@1× 1 128× 128× 2

Iφ

Input 128× 128× 2
γ (GRFF) 128× 128× 256

Conv, ReLU, BN 256@1× 1 128× 128× 256
Conv, ReLU 256@1× 1 128× 128× 256
Conv, ReLU 256@1× 1 128× 128× 256

Conv, Sigmoid 3@1× 1 128× 128× 3

Table 1. Detailed architecture of grid deformer Gθ and the image
generator Iφ. Here, ReLU and BN stands for Rectified Linear Unit
and Batch Normalization, respectively. We use the input image
size 128× 128× 3 as an illustrative example.

2. Air turbulence Simulation Details
We use the physics-based simulation software presented

in [5] to render images affected by the air turbulence. Fig.
1 illustrates the simulation setup and the respective param-
eters used in the simulator. Numerical values of the param-
eters are given in Table 2.

Figure 1. Air turbulence simulation setup. We simulate the dis-
torted image of the scene through the turbulent air. Here L is the
path length from camera to scene; d is the camera’s focal length;
h is the camera height; and D is the camera’s aperture size.

Parameter Value
Path length L 2km

Height h 4m
Aperture Diameter D 0.08m

Focal Length d 0.3m
Wavelength λ 550nm

Turbulence Weak 1× 10−14 m−2/3

Strength Medium 1× 10−13 m−2/3

C2
n Strong 1× 10−12 m−2/3

Table 2. Air turbulence simulation parameters

The simulator use the refractive image constant (C2
n) to

control the strength of the air turbulence. Stronger turbu-
lence results in more distorted images. In our simulation,
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Figure 2. Exemplary images of the three turbulent strength levels
(weak, medium, and strong) in comparison with the distortion-free
image (taken from Open Turbulent Image Set (OTIS) [2]).

we use three levels of C2
n to render images under weak,

medium, and strong air turbulence. Fig. 2 shows exemplary
images of the three turbulent strengths.

3. More Results on Ablation Study
3.1. Effect of number of input images

In the main paper, we show the quantitative comparison
results of different number of input images. Here Fig. 4
shows the visual comparison results. We can see that the
qualitative improvement of the predicted distortion-free im-
age becomes margin when the number of input images is
greater than 10. We therefore take 10 input images as the
default setting to balance performance and efficiency.

3.2. Effect of GRFF parameters

We evaluate the impact of the bandwidth-related scale
factor κ for Fourier feature mapping. We show the quanti-
tative comparison results (average PSNR/SSIM) in Table 3,
and qualitative comparison results on distortion-free image
and distortion field prediction in Fig. 4.

κ 0.1 1 8 10 50 100
PSNR 19.38 19.29 20.28 20.01 16.24 13.89
SSIM 0.627 0.800 0.796 0.754 0.373 0.372

Table 3. Quantitative comparison on varied Fourier feature map-
ping parameters κ. Red and Blue refer to the top and second best
performance respectively.

3.3. Effect of regularization term R(Ik)

We conducted an ablation study by removingR(Ik). The
qualitative comparison results are shown Fig. 3. We can see
that without using R(Ik), the output image appear blurry.
The quantitative comparison results are shown in Table 4.
Both PSNR and SSIM are higher when R(Ik) is added.

Without R(Ik) With R(Ik)
PSNR 19.54 20.48
SSIM 0.772 0.795

Table 4. Quantitative comparison on R(Ik).

Figure 3. Qualitative comparison on regularization term R(Ik).

4. More Results on Synthetic and Real Data

4.1. Air turbulence results

We show additional visual results on simulated air turbu-
lence in Fig. 5. We compare on simulated air turbulence of
three strength levels: weak, medium and strong. We com-
pare with the state-of-the-art method CLEAR [1], whose
source code is available. We also compare with the average
image of the entire input sequence, as well as our initializa-
tion result.

We show more results on the real captured hot-air tur-
bulence scenes in the supplementary video. The videos are
filmed by imaging through the hot air generated by a lit gas
stove. We include video clips of two scenes. Each scene
has 50 frames. As recovering all frames together is com-
putationally expensive, we divide the 50 frames into three
batches: 20, 20 and 10. We then feed these three batches
into our network to predict the distortion-free image and
the distortion fields. In the videos, we show the predicted
distortion-free image from the last batch.

4.2. Water turbulence results

We show additional visual results on simulated water tur-
bulence in Fig. 6. We compare on simulated water turbu-
lence of three types: ripple, ocean and Gaussian. We com-
pare with the state-of-the-art methods Tian et al. [7], Oreifej
et al. [4], and Li et al. [3].

We show more results on the real captured water turbu-
lence scenes in the supplementary video. The real captured
turbulent videos are provided by [6]. The videos are cap-
tured through a wavy water surface. We choose two dif-
ferent types of waves with different background patterns.
The video processing method is similar to the air turbulence
case. Each scene has 50 frames. We divide the 50 frames
into three batches: 20, 20 and 10. We then feed these three
batches into our network to predict the distortion-free im-
age and the distortion fields. In the videos, we show the
predicted distortion-free image from the last batch.
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Figure 4. Qualitative comparison on varied values for κI and different numbers of input images (1, 5, 10, 15, and 20).

Figure 5. Qualitative comparison on simulated air turbulence images with various strengths (weak, medium, and strong).
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Figure 6. Qualitative comparison on simulated water turbulence images with various types of waves (ripple, ocean, and Gaussian).
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