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Abstract

Helmholtz stereopsis (HS) exploits the reciprocity prin-
ciple of light propagation (i.e., the Helmholtz reciprocity)
for 3D reconstruction of surfaces with arbitrary reflectance.
In this paper, we present the polarimetric Helmholtz stere-
opsis (polar-HS), which extends the classical HS by con-
sidering the polarization state of light in the reciprocal
paths. With the additional phase information from polar-
ization, polar-HS requires only one reciprocal image pair.
We formulate new reciprocity and diffuse/specular polari-
metric constraints to recover surface depths and normals
using an optimization framework. Using a hardware proto-
type, we show that our approach produces high-quality 3D
reconstruction for different types of surfaces, ranging from
diffuse to highly specular.

1. Introduction

Reconstructing 3D surfaces from 2D images is a long-
standing ill-posed problem in computer vision. The com-
plex surface reflectance properties of real-world objects
make the problem highly challenging. All existing methods
are limited to certain types of surface reflectance. For ex-
ample, passive techniques examine the optical appearance
of a surface under non-tightly focused illumination (e.g., a
distant light source) and often assume photo-consistency or
Lambertian reflectance model for 3D reconstruction.

Helmholtz Stereopsis (HS) [55] is a 3D reconstruction
technique that can recover surfaces with arbitrary and un-
known reflectance. HS exploits the symmetry of surface
reflectance; this is accomplished by using reciprocal im-
age pairs (minimal three) that are captured with exchanged
camera and light source positions. The reciprocity prop-
erty guarantees that the relationship between the intensities
at corresponding pixels depends only on the surface shape,
and is independent of surface reflectance.

In this paper, we present a novel method we call polari-
metric Helmholtz Stereopsis (polar-HS), which extends the
classical HS by considering the polarization state of light in
the reciprocal paths. We investigate the reciprocity relation-
ship when the polarization states of incident and outgoing

light are unrestricted (in which case the original Helmholtz
reciprocity property cannot be directly applied). We de-
rive a transpositional reciprocity relationship based on the
Stokes-Mueller formalism, and formulate a reciprocity con-
straint for depth and normal estimation. We also exploit
polarimetric cues under different types of reflections. We
propose a new polarimetric image decomposition method
that allows us to apply the polarimetric constraints under
different circumstances. By combining the reciprocity and
polarimetric constraints, our method can recover the sur-
face depth and normal with only one reciprocity pair, which
greatly simplifies the capture process. Unlike other one-
pair HS methods [56, 48] that assume continuous paramet-
ric depth functions, polar-HS works for discontinuous depth
and does not require priors on surface geometry and mate-
rial properties.

We validate our method with both synthetic and real ex-
periments. We build a real polar-HS acquisition system
with a rotating wheel to allow exchange of camera and light
source positions. We perform experiments on objects with
various shapes and reflectances, and on different composite
scenes. Results show that our method is state-of-the-art.

Contributions. Our key contribution is the derivation
of the transpositional reciprocity relationship when unre-
stricted polarization states are being considered. The orig-
inal Helmholtz reciprocity property has strong restrictions
on the polarization states of the light beams in the recipro-
cal paths, which is hard to satisfy in practice. The transpo-
sitional reciprocity we derive allows the classical HS to be
extended to the polarimetric case.

We propose a new image decomposition formulation
that consists of three components: polarized-specular,
polarized-diffuse, and unpolarized-diffuse. The decompo-
sition provides a more accurate estimation of the angle of
polarization for regularizing the surface normal, because
it separates diffuse and specular (the angles of polariza-
tion under these two cases have a 90◦ shift). Shape-from-
polarization methods usually use the overall angle, and as-
sume a dominant type of reflection. This decomposition
also provides a specular map that allows us to apply the po-
larimetric cues under different types of reflection.

Polar-HS reduces the minimal number of image pairs to



only one, without imposing any surface prior. Compared to
other shape-from-polarization methods, polar-HS does not
have the problem of angular ambiguity and does not require
the refractive index of the surface to be known.

2. Related Work

We first briefly review physics-based methods for 3D
shape recovery before focusing on two specific classes of
methods that are most relevant to our work: reciprocity-
based and polarization-based. Table 1 summarizes a com-
parison of our method (polar-HS) with classical methods.

Physics-based Shape Recovery. Physics-based techniques
examine the optical appearance of a surface under certain
illumination mode and often assume photo-consistency or
Lambertian reflectance model for 3D reconstruction. We
can categorize the techniques as passive or active based
on the illumination mode. Passive methods use unknown
and non-tightly focused illumination (e.g., a distant light
source). Notable examples include multi-view stereo [41,
42, 46] and structure-from-motion [49, 1, 13]. As passive
methods heavily rely on the object’s intrinsic appearance
for feature matching, they are ineffective on textureless sur-
faces. Active techniques use known and controlled illu-
mination as a probe; examples include photometric stereo
[53, 9, 23], time-of-flight [15, 22, 35], and structured light
[30, 20, 19, 21]. These methods can produce dense 3D
reconstruction, but are usually sensitive to view-dependent
specularity and the inter-reflection caused by concave sur-
faces. All these methods have limitations due to the com-
plex reflectance of real-world surfaces.

Helmholtz Stereopsis (HS). The method is first introduced
by Zickler et al. [55]. It is an active approach that is capa-
ble of recovering surfaces with arbitrary reflectance. Much
progress has subsequently been made to improve the origi-
nal HS. Tu and Mendonça [48] solve HS with a single pair
by assuming a piece-wise linear curve constraint. Zickler et
al. [56] formulate a PDE constraint by assuming C1 conti-
nuity in depth, so as to perform HS under a binocular set-
ting. Jankó et al. [25] introduce a general radiometric cal-
ibration method for HS. Delaunoy et al. [17] extend HS to
full-body scanning by using variational approach to opti-
mize over the entire surface. Weinmann et al. [51] combine
HS with a structured light technique to improve the recon-
struction accuracy. Mori et al. [33] introduce an integration-
based Helmholtz condition which reduces the noise sen-
sitivity of HS. Roubtsova and Guillemaut [39, 40] derive
a Bayesian framework for HS optimization, and use color
multiplexing to simultaneously capture the reciprocal pair
in order to handle dynamic scenes. Our method extends HS
by expanding the reciprocity constraint to polarimetric re-
flectance and incorporating the polarimetric cues for more
accurate 3D reconstruction.

Method
Min #
Inputs

Surface
Assumption Accuracy

MVS 2 Lambertian Moderate
PS 3 Lambertian High
SL > 10 Arbitrary High
SfP 3 Dielectric Low
HS 6 Arbitrary Moderate

polar-HS 4 Arbitrary High

Table 1. A comparison of polarimetric Helmholtz Stereopsis
(polar-HS) with classical 3D reconstruction methods. Note: MVS
- multi-view stereo; PS - photometric stereo; SL - structured light;
SfP - shape-from-polarization; HS - Helmholtz stereopsis.

Shape-from-Polarization (SfP). This class of methods
model the surface normal using the degree or angle of po-
larization. The surface’s refractive index is usually assumed
to be known. Miyazaki et al. [29] and Atkinson and Han-
cock [4] leverage the diffuse polarization for shape esti-
mation. Rahmann and Canterakis [38] propose a specu-
lar polarization model and apply it on reflective surfaces.
SfP methods usually suffer from the azimuth angle ambigu-
ity which may cause the normal estimation being flipped.
To resolve this ambiguity, additional shape priors or vi-
sual cues (such as convexity prior [29, 31], boundary nor-
mal prior [4], shading cues [5], photometric cues [18, 37],
and multi-spectral measurements [24]) are combined with
the polarization model. Smith et al. [44, 45] use SfP to
solve for surface height to mitigate the angular ambiguity.
Many works use SfP to recover fine surface details given
a coarse shape estimated from another technique, such as
multi-view stereo [3, 12, 54], photometric stereo [2, 47],
space carving [28], structure-from-motion [16], or RGB-D
sensors [26, 27]. Beak et al. [7] jointly estimate the polari-
metric reflectance and the surface geometry. Ba et al. [6]
propose a data-driven approach that estimates the surface
shape from polarimetric images with a deep neural network.

3. Helmholtz Stereopsis

Helmholtz stereopsis (HS) [55] works by exploiting the
symmetry of surface reflectance. It uses several reciprocal
image pairs with exchanged camera and light source posi-
tions to estimate surface normal and depth. Let Oa ∈ R3

and Ob ∈ R3 be two 3D positions. A reciprocal image
pair I = {Ia, Ib} is captured by swapping the camera and
light source at Oa and Ob (i.e., Ia is captured with the light
source at Oa and the camera at Ob; Ib is captured with the
light source at Ob and the camera at Oa). Given a point on
the object surface, the goal is to estimate its 3D position P
and normal vector n.

Let f(i,o) be the bidirectional reflectance distribution
function (BRDF) of the surface point. f is calculated as the



ratio of the outgoing radiance (along the direction o) and the
incident irradiance (along the direction i). The Helmholtz
reciprocity indicates that f is symmetric about the incident
and outgoing directions, i.e., f(i,o) = f(o, i). Let va =
(Oa−P )/∥Oa−P∥2 and vb = (Ob−P )/∥Ob−P∥2 be two
unit directions from P to Oa and from P to Ob. The two
intensity images in the reciprocal pair can be formulated as

Ia = f(va,vb)Eρa(va · n),
Ib = f(vb,va)Eρb(vb · n),

(1)

where E is the light source intensity, ρa = 1/||Oa − P ||2
and ρb = 1/||Ob − P ||2 are distance attenuation factors,
and va · n = cos θa and vb · n = cos θb are angular fall-off
factors.

By dividing the above two equations, we eliminate the
light source intensity E and the surface BRDF (noting that
f(va,vb) = f(vb,va)). We thus obtain the following re-
ciprocal constraint that regularizes depth and normal with
respect to the reciprocal image pair:

(Iaρbv
⊤
b − Ibρav

⊤
a )n = 0. (2)

Given a pre-calibrated camera and light source positions
(Oa and Ob), the surface position P and normal n can be
solved with at least three reciprocal pairs. This is because
given an estimated P , we need at least three equations to
uniquely solve for n ∈ R3.

4. Polarimetric Helmholtz Stereopsis
Our polarimetric Helmholtz stereopsis (polar-HS) uses

a linearly polarized light source and a polarization camera
to acquire the reciprocal image pair. Our images therefore
embed the polarization state of light. Note that the original
Helmholtz Reciprocity Principle restricts its applicability to
corresponding polarization states for incident and outgoing
light [14] (i.e., when the light path is reversed, the polar-
ization states of the two light beams should also be inter-
changed). It cannot be directly applied to unrestricted rep-
resentations of the polarization states. We derive the reci-
procity relationship under the unrestricted cases, and use it
as a constraint for surface reconstruction (Section 4.1).

We introduce polarimetric constraints that are dependent
on the surface reflection types (i.e., specular polarized, dif-
fuse polarized, and diffuse unpolarized), and propose a new
image separation method to enable the usage of the polari-
metric constraints (Section 4.2). An optimization frame-
work is used to jointly estimate the surface normal and
depth by combining the reciprocity and polarimetric con-
straints (Section 4.3).

4.1. Polarimetric Reciprocity

We use the Stokes vector to describe the polarization
states. A Stokes vector has four components: S =
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Figure 1. Configuration of the polarimetric Helmholtz stereopsis.

[S(0), S(1), S(2), S(3)]⊤, where S(0) specifies the radiant
intensity of light (equivalent to the intensity image), S(1)
specifies the preference of horizontal to vertical linear polar-
ization, S(2) specifies the preference of 45◦ to 135◦ linear
polarization, and S(3) specifies the preference of right to
left circular polarization. Additional constraints on Stokes
vector values are: 1) S(0) ∈ R+, 2) S(1), S(2), S(3) ∈
[−S(0), S(0)], and 3) S(0)2 ≥ S(1)2 + S(2)2 + S(3)2.
Note that a Stokes vector is relative to the selection of ref-
erence axes (i.e., a two-dimensional orthogonal basis on the
wave plane that is perpendicular to the light’s propagation
direction). Here we assume linearly polarized light.

We use the same configuration as the standard HS, ex-
cept that the light source is linearly polarized with Stokes
vector Sl and the camera is polarization-sensitive so that it
can measure the Stokes vectors of the light received. Fig. 1
illustrates our configuration. Given a reciprocal Stokes vec-
tor pair S = {Sa, Sb}, Sa is measured with the light source
at Oa and the camera at Ob, and Sb with swapped light
source and camera positions. Similar to the standard HS,
we can formulate the Stokes vectors measured by the cam-
era (Sa and Sb) with the polarimetric surface reflectance
along with the distant and angular fall-off factors as

Sa = M(va,vb)Slρa(va · n),
Sb = M(vb,va)Slρb(vb · n).

(3)

The 4 × 4 matrix M (Mueller matrix) represents the po-
larimetric surface reflectance that describes how the Stokes
vector is changed after reflection.

Now the question is: does M still follows the same
reciprocal relationship as the BRDF (i.e., M(va,vb) =
M(vb,va)) when the Stokes vectors of the incident and
reflected light are represented under arbitrary (or unre-
stricted) reference axes? The original Helmholtz Reci-
procity Principle [50] is as follows:

Theorem 1 (Helmholtz Reciprocity). Suppose a certain
amount of light J leaving the point A in a given direction is
polarized in a, and that of this light, the amount K arrives
at point B polarized in b. Then, when the light returns over
the same path, and the quantity of light J polarized in b pro-
ceeds from the point B, the amount of this light that arrives
at point A polarized in a will be equal to K.
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Figure 2. We rotate the local reference axes to a global reference
so that Theorem 1 can be applied to describe the reciprocity rela-
tionship between the two paths.

Theorem 1 has restricted applicability on correspond-
ing polarization states for incident and outgoing light (i.e.,
when the light path is reversed, the polarization states of
light should also be interchanged). In reality, it is hard to
acquire the Stokes measurement under this restricted cir-
cumstance. For example, both the camera and light source
have their own Stokes representation under local reference
axes. It is impractical to exchange their Stokes reference
axes when their positions are swapped. We therefore derive
a new reciprocity relationship when the representation of
polarization state is unrestricted (i.e., the polarization states
of incident and outgoing light are not interchangeable due
to different reference axes). Our reciprocity relationship is
stated as follows:

Lemma 1.1. When the two light beams in a reversible path
are represented by Stokes vectors with reference axes that
are associated with the light beams, the reciprocity rela-
tionship can be expressed as a transposition of the Mueller
matrix that correlates the two Stokes vectors.

Proof. Consider two light beams with Stokes vectors Si

and So that propagate along directions i and o, respectively.
Both Si and So are represented in their local reference axes
bi = {xi,yi} and bo = {xo,xo} (where {xi,yi} and
{xo,xo} are two pairs of orthogonal axes on their respective
wave plane). Let M be the Mueller matrix that correlates Si

and So. We can write the following equations:

So = M(i,o)Si, Si = M(o, i)So. (4)

As bi and bo are associated with the light beams and are
switched when the light path is reversed, Theorem 1 cannot
be directly applied to describe the reciprocity relationship
between M(i,o) and M(o, i).

In order to apply Theorem 1, we define a global reference
basis bg = {xg,yg} and transform the two Stokes vec-
tors from their local references to the global reference (see
Fig. 2). The global reference axes are defined as: yg = i×o,

xg = yg × i for path i, and xg = yg × o for path o. The
global reference axes satisfy the condition of Theorem 1 as
it is associated with the paths instead of the light beams.

By multiplying the Mueller matrices that rotate the local
references to the global one, we obtain two new Stokes vec-
tors S′

i and S′
o that are represented in the global reference

axes: S′
i = Mr(Φi)Si and S′

o = Mr(Φo)So. Φi and Φo are
the angles spanned by yi and yg , and yo and yg , respec-
tively. Let M ′ be the Mueller matrix that correlates S′

i and
S′
o. Thus M ′ satisfies the reciprocity relationship described

in Theorem 1: M ′(i,o) = M ′(o, i) = Mf , leading to

S′
o = MfS

′
i, S′

i = MfS
′
o. (5)

By substituting S′
i and S′

o with Si and So (respectively) in
Eq. 5, we have

So = M−1
r (Φo)MfMr(Φi)Si,

Si = M−1
r (Φi)MfMr(Φo)So.

(6)

Using the definitions for So and Si in Eq. 4, Eq. 6 becomes

M(i,o) = M−1
r (Φo)MfMr(Φi),

M(o, i) = M−1
r (Φi)MfMr(Φo).

(7)

Since the rotational Mueller matrices are orthonormal
(i.e., M−1

r = M⊤
r ) and Mf is diagonally symmetric (i.e.,

Mf = M⊤
f ) [11], we can derive the following reciprocity

relationship in the form of transposition:

M⊤(i,o) = (M−1
r (Φo)MfMr(Φi))

⊤

= M−1
r (Φi)MfMr(Φo)

= M(o, i).

(8)

Sekera [43] derives a transpositional reciprocity relation-
ship similar to Lemma 1.1 in the scattering processes.

Reciprocity Constraint. As the Stokes vectors of the
camera and light source are observed in their local refer-
ence axes, the surface reflectance Mueller matrix M follows
the transpositional reciprocity according to Lemma 1.1:
M⊤(va,vb) = M(vb,va). By substituting this reciprocity
relationship into Eq. 3 and eliminating M , we obtain the
following reciprocity constraint:

(Sa ⊗ Sg
l ρbv

⊤
b − Sg

l ⊗ Sbρav
⊤
a )n = 0. (9)

where Sg
l is the transpose of the pseudoinverse of Sl; ⊗ is

the Kronecker product.
We use Eq. 9 to estimate surface depth (ρa,b and va,b

are derivable from depth) and normal n in an iterative way
when given reciprocal Stokes vector pair S = {Sa, Sb} and
pre-calibrated light source Stokes vector Sl. More details
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Figure 3. The proposed decomposition. We first convert the im-
ages captured by a polarization camera to the Stokes vectors. We
then decompose the Stokes vectors into three components.

on the optimization algorithm can be found in Section 4.3.
Given a depth estimation, we need at least three equations
to uniquely solve for the n ∈ R3.

The standard HS generates the three equations from
three reciprocal pairs. In our polarimetric case, we obtain
two equations for one reciprocal pair by changing the po-
larization state of light source, because our reciprocity con-
straint (Eq. 9) is dependent on the light source (while the
standard HS is not). The maximum number of independent
equations we can obtain for one pair is two. This is because
two dot products (i.e., va · n and vb · n) reduce the terms
that involve the normal to scalars.

In principle, if we use only the reciprocity constraint, we
would need at least two reciprocal pairs (i.e., 4 equations) to
solve for the depth and normal. However, because the ob-
served polarization states are directly related to the surface
geometry and reflectance type, we use the polarimetric con-
straints (Section 4.2) to formulate one additional indepen-
dent equation on normal. This means that we can estimate
depth and normal using only one reciprocal pair.

4.2. Polarimetric Cues

We consider the polarimetric constraints under different
types of reflected light. We decompose the measured Stokes
vectors into three components of different reflection and po-
larization characteristics (i.e., specular vs. diffuse, polar-
ized vs. unpolarized), and then derive a specific polarimet-
ric constraint for each type of reflection.

Polarimetric Image Decomposition. The problem has
been studied in polarization-based specularity removal [52,
36, 34]. An image is often decomposed into a specular com-
ponent and a diffuse component, depending on the polariza-

tion status. It is commonly assumed that the specular com-
ponent is polarized while diffuse is unpolarized. However,
as shown in [4], diffuse reflection also exhibits useful po-
larimetric characteristics that regularize the surface normal.
Here we propose a new decomposition formulation that
separates the observed Stokes vectors (S) into three com-
ponents: specular-polarized (Ssp), diffuse-polarized (Sdp),
and diffuse-unpolarized (Sud):

S = Ssp + Sdp + Sdu. (10)

Suppose we have two linearly polarized light sources
with the same intensity but perpendicular angles of polar-
ization. Without loss of generality, we assume their angles
of polarization are 0◦ and 90◦. Their Stokes vectors are S0

l

and S90
l , respectively. Note that these light sources can also

provide us the two reciprocity constraints. Let S0 be the
Stokes vector reflected from a surface point and observed
by the camera when light source is S0

l , and S90 is observed
under S90

l (see Section 4.1 for composition and properties
of the Stokes vector). Here we assume S0 and S90 are lin-
early polarized (i.e., S0(3) = S90(3) = 0).

We now show how S0 can be decomposed; S90 can be
similarly decomposed. For notation simplicity, we drop
the superscript for degree in the decomposition components
(Ssp, Sdp, and Sdu). Since the light sources’ angles of po-
larization are crossed by 90◦, the polarization parameters in
S0
l and S90

l have the following relationship:

S0
l (1) + S90

l (1) = 0, S0
l (2) + S90

l (2) = 0. (11)

Since the specular reflection is always fully polarized and
its angle of polarization is the same as that for the light
source, we use this relationship to cancel out the polar-
ization parameters in Ssp by adding S0 and S90. Since
Sdu is unpolarized, it has only the intensity parameter:
Sdu = [Sdu(0), 0, 0, 0]

⊤. The polarization parameters in
S0 + S90 are then solely related to Sdp, yielding

Sdp(1) =
S0(1) + S90(1)

2
, Sdp(2) =

S0(2) + S90(2)

2
. (12)

The polarization parameters in Ssp are computed as

Ssp(1) = S0(1)− Sdp(1), Ssp(2) = S0(2)− Sdp(2). (13)

We calculate S(0) for both Sdp and Ssp using the Stokes
vector constraint S(0)2 = S(1)2 + S(2)2 + S(3)2, as the
two components are fully polarized. Finally, we compute
the intensity of Sdu as

Sdu(0) = S0(0)− Ssp(0)− Sdp(0). (14)

Using Eqs. 12-14, we can decompose a reflected Stokes
vector into three components. Fig. 3 shows an example of
our decomposition.



Polarimetric Constraints. Both the specular and diffuse
polarized reflections can regularize the surface normal. Ac-
cording to Fresnel’s equations, the specular reflection is
dominated by s-polarized light, whose angle of polariza-
tion is perpendicular to the reflection plane (i.e., the plane
formed by the surface normal and the reflected light). This
happens when the incident light is not oblique to the local
surface. In the diffuse reflection case, the angle of polariza-
tion has a 90◦ phase shift [4] which means that the vibration
direction lies on the reflection plane. Therefore, by project-
ing the angle of polarization and surface normal onto the
image plane, we can formulate the two constraints for the
diffuse- and specular-polarized reflections:

[sin(ϕ),− cos(ϕ), 0]n = 0, (15a)
[sin(ϕ+ 90◦),− cos(ϕ+ 90◦), 0]n = 0, (15b)

where ϕ = arctan(Sdp(2)/Sdp(1))/2 is the angle of po-
larization in the diffuse case. Eq. 15a is the constraint for
diffuse-polarized reflection. Eq. 15b is for the specular-
polarized case, whose angle of polarization is shifted 90◦.

Similar constraints are used in [44, 45]. However, most
methods directly use the overall Stokes vector to compute
the angle of polarization. We empirically show that we are
able to estimate a more accurate angle of polarization by
using the diffuse-polarized component.

In order to use the polarimetric constraints, we threshold
Ssp(0) to a binary mask that indicates the specular pixels.
We use Eq. 15b as the additional constraint for the specular
pixels, and Eq. 15a for all other pixels considered diffuse.

4.3. Depth and Normal Estimation

By combining the reciprocity and polarimetric con-
straints, we can form a linear system for the surface normal
n, i.e., W(d)n = 0; this is similar to the standard HS [55].
The coefficient matrix W is a function of the surface depth
d, and we solve for d and n.

We first optimize the depth. Given the true depth d∗,
the rank of W(d∗) should be 2, so that the surface nor-
mal n will be uniquely determined. If the depth value is
incorrect, the rank of W will be greater than 2. This indi-
cates that if we apply SVD on W: W = UΣV ⊤, where
Σ = diag(σ1, σ2, σ3), σ1 ≥ σ2 ≥ σ3, the ratio σ2/σ3 will
be infinitely large at the true depth d∗. Thus, we use the ex-
ponential decay function proposed in [40] as our data term
for depth estimation:

Edata(d) = exp(−µ
σ2(d)

σ3(d)
), (16)

where µ = 0.2 ln(2) [40]. We also use a smoothness term
to reduce noise in the depth estimation :

Esmooth(d) =
∑

(p,q)∈N

min(∥dp − dq∥,K), (17)
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Figure 4. Normal reconstruction with synthetic data. “White bil-
liard” and “spectralon” are the surface materials.

where p and q are two pixels in the neighborhood N ; K
is a truncation threshold that prevents the discontinuous
depths from being smoothed. The combined cost function
for depth estimation is:

d∗ = argmin
d

∑
(Edata + λEsmooth), (18)

where λ is a balancing weight. In our experiments, we use
λ = 0.01. We use graph-cut [10] to solve the depth as a
multi-labeling problem.

Once the depth values are estimated, we can solve the
normal n using W(d)n = 0. We then iteratively refine
the depth and normal with the following steps: 1) we apply
Poisson integration on n to obtain a new set of depth d′;
2) we use d′ as an additional guidance in Eq. 18 to optimize
the depth with a finer depth interval; 3) we use the estimated
depth to form W(d) and solve for the normal again. We use
the normal difference to decide whether the refinement has
converged. In our experiments, it usually converges after
two iterations.

5. Experiments

We validate our method with both synthetic and real ex-
periments on scenes with various shapes and reflectance.

5.1. Synthetic Experiments

We use the Mitsuba 2 renderer1 to simulate polarimeric
images as captured by a polarization camera. Specifically,
we use the polarized rendering mode to simulate four direc-
tional polarization images: I0, I90, I45, and I135 (each with
resolution 500 × 500). In the polarized rendering mode,
the renderer will track the full polarization state of light
during simulation. The system configuration mirrors our
real experimental setup. We use the real-captured KAIST

1https://www.mitsuba-renderer.org



Ground Truth

Fake Gold

Mint Silicone

Orange Billiard

Fake White PearlC
ro

ss
-S

ec
ti

o
n
 C

o
m

p
ar

is
o
n

Fake White PearlFake Gold Mint Silicone Orange Billiard

MAE: 8.68
o

MAE: 13.02
o

MAE: 5.50
o

MAE: 7.35
o

Figure 5. Synthetic results with respect to different material types.
We show rendered color images of the materials, recovered normal
maps, and cross-sections of the recovered shapes.

XXXXXXXXXMethod
SNR/dB

10 20 30 40

HS (3-pair) 23.41 13.59 8.05 6.87
polar-HS (1-pair) 14.71 8.05 6.53 6.27
polar-HS (2-pair) 19.16 6.43 2.14 0.95

Table 2. Mean angular error (in degree) of the normal estimations
with respect to the noise levels.

pBRDF dataset [8] to model the polarimetric surface re-
flectance. We test on a variety of 3D models and surface re-
flectance. Fig. 4 shows our rendered images and recovered
normal maps with two reciprocal pairs. We evaluate the
reconstruction with per-pixel angular errors and the mean
angular error (MAE). More results on normal and surface
reconstruction can be found in the supplementary material.
Ablation on Material Types. We use different pBRDFs
provided by the KAIST dataset on a sphere object to test
our performance with respect to the material types. Fig. 5
shows recovered normal maps and cross-sections of the re-
covered shapes. Here the results are computed using one
reciprocal pair. Results on more materials and two recipro-
cal pairs can be found in the supplementary material. We
can see that the one-pair results are sensitive to the material
type as the polarized reflection of some materials (e.g., mint
silicone) is weak, which results in the angle of polarization
being highly noisy and unreliable. The two-pair results (see
supplementary material) are more robust as the reciprocity
constraint alone provides sufficient regularization.
Ablation on Noise Levels. We evaluate our method with
respect to different levels of noise. In this experiment, we
use a sphere object with the “white billiard” material. We
add Gaussian white noise to the rendered images and use the
signal-noise ratio (SNR) to quantify the noise level (smaller
SNR number indicates higher noise level). We evaluate the
reconstruction using MAE of the normal estimation. We
test our method (polar-HS) using one and two reciprocal
pairs respectively, and compare with the standard HS that

Ball (Polyester)

Corner (Cardboard)

Normal Map  Cross-Section ComparisonModel Photograph
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HS (3-Pair)
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15.62
o
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o
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o
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o
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Figure 6. Quantitative evaluation of the normal and shape recon-
struction on real scenes.

uses three pairs. The results are reported in Table 2. We can
see that both our one-pair and two-pair methods are more
accurate than the three-pair HS, and less sensitive to noise.

5.2. Real Experiments

Prototype. We implement a physical system for capturing
the polar-HS image pairs. We mount a polarization camera
and a pico projector on an automated rotating wheel so that
their positions can be precisely exchanged. Both the camera
and the project are calibrated geometrically [32] and radio-
metrically [25]. More details on the system construction
can be found in the supplementary material. A reciprocal
pair is captured by rotating the wheel at 180◦. At each po-
sition in the pair, we capture two polarization images under
0◦ and 90◦ polarized light.
Quantitative Evaluation. We quantitatively evaluate our
method on two real scenes: a billiard ball (59mm diameter)
and a cardboard corner (corner angle of 110◦). We com-
pare the normal and surface reconstruction of our method
with one pair and two pairs, and the standard HS with three
pairs. The scene settings and the reconstruction results are
shown in Fig. 6. We report the MAE of recovered normals,
and compare the recovered shapes in cross-sections. Our
one-pair reconstruction results have large errors at oblique
polarization angles (i.e., ϕ = 90◦) where the polarimetric
constraint becomes unstable. However, our two-pair results
are highly accurate in both scenes.
Qualitative Evaluation. We test our method on a vari-
ety of scenes with different types of reflectance, ranging
from purely diffuse to highly specular. Some are compos-
ite scenes that contain multiple surfaces types. Fig 7 shows
our recovered surfaces. Here we demonstrate the two-pair
results as they are more accurate than one-pair ones. Results
on more scenes and one reciprocal pair can be found in the
supplementary material. We can see that our recovered sur-
faces preserve fine geometric details (for example, bandage
on the statue and beard of the gnome). Our method also
works for concave scenes that do not exhibit very strong



Ceramic JarPlantPlaster Statue Scallop Shell Soap & DishGnome Bunny & Eggs

Figure 7. Surface reconstruction results on real scenes. Here the results are computed with two reciprocal pairs.

SfP SL PS HS Ours (1-pair) Ours (2-pair)PS HS Ours (1-pair) Ours (2-pair)

Orange

SfP SLSL 

Figure 8. Comparisons of our method with classical 3D reconstruction methods. We show the recovered normal maps (row one), relit
surfaces (row two), and zoom-in views of the surfaces (row three).

interreflection (for example, the soap dish and bunny ears).
We also compare our method against classical 3D re-

construction methods: shape-from-polarization (SfP) [44],
structured light (SL) [30], photometric stereo (PS) [53], and
standard HS [55] with three pairs. We show visual compar-
ison results on an orange scene in Fig. 8. The overall shapes
of our one-pair and two-pair results are closer to the struc-
tured light scanned result (SL). Our method is also able to
recover more surface details than SL.

6. Conclusion and Discussion
In summary, we extend the classical Helmholtz stereop-

sis to the polarimetric case by deriving a new transpositional
reciprocity relationship. We exploit the polarimetric cues
and reduce the minimal number of reciprocal pairs to per-
form HS to one. Our proposed polar-HS can recover various
types of surfaces with high accuracy.

Limitations. Although we have demonstrated successful
3D reconstruction on a variety of scenes, our method has

limitations on handling strong interreflection and transpar-
ent scenes (see failure examples in the supplementary mate-
rial). If the interreflection is too strong and results in caus-
tic effects on the surface, our method fails at the regions
where the caustics occurs. As for the transparent objects,
the captured images are transmission dominant. However,
our method relies on analyzing the reflected light for sur-
face reconstruction. One possible solution is to separate the
weak reflected image from the transmitted one.

Future Directions. As our one-pair solution suffers from
large errors at oblique polarization angles, we plan to ex-
ploit additional physical constraints (e.g., shading cues or
multi-view constraint) for improvement. As our polar-HS
only needs one reciprocal pair in theory, it is possible to
build a compact acquisition system without using a rotat-
ing wheel (e.g., in a binocular setting with polarization-
multiplexing), which makes our solution more practical.
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