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1. More Details on Table 1 and Equation 9

Table 1 compares our method with classical 3D reconstruction methods. Readers can find more about these methods in the
following references: multiview stereopsis (MVS) [S], photometric stereopsis (PS) [8l], structured light (SL) [3]], shape-from-
polarization (SfP) [6], and Helmholtz stereopsis (HS) [10]. In this table, we assume all classical methods use a traditional
camera, whereas our method (polar-HS) uses a polarization camera. It is worth noting that the minimum number of input
for SfP is 1 when a polarization camera is used. However, the reconstruction accuracy is low. In our method, the minimum
number of input is 4 (one reciprocal pair) because we need to capture two images under 0° and 90° linearly polarized lighting
at each camera position in the pair. In addition, note that the accuracy of MVS is only moderate when the number of input
images is small. The method is capable of high accuracy when given a large number of images (more than 10) captured from
different viewpoints.

We are aware that in recent years, many learning-based methods are proposed for 3D reconstruction from a single and/or
multiple images [[7,9]. These methods are usually augmented with some form of data prior by training on a labeled dataset.
In contrast, our method relies exclusively on the captured data and uses physical constraints for reconstruction. Therefore,
we only compare with the physics-based methods that are more relevant to our approach in Table 1.

In Equation 9, S,, Sy, and S lg are of dimension 4 x 1 as they are Stokes vectors. The Kronecker product ® between S,
(or Sp) and S lg results in a matrix of dimension 16 x 1. p, and p;, are two scalars that would not affect the matrix dimension.
n, v, and vy, are 3D vectors. The left-hand side of Equation 9 ends up as a 16 x 1 matrix.

2. Acquisition System Prototype

System Construction. As shown in Fig. (1| our acquisition system consists of a monochrome polarization camera (FLIR
Blackfly S Polar-Mono) and a pico projector (Sony MP-CL1A) as point light source. The polarization camera captures four
directional polarization images (i.e., I°, I°0, I4®, and I'3%) in one shot as its sensor has on-chip polarizers{ﬂ The camera
uses a 25mm F/5.6 lens. The exposure time we use is 800 ms. With the four directional polarization images captured by the
camera, we can compute the Stokes vector as S(0) = 19 + 190, S(1) = I — I°°, and S(2) = I* — I'35. Note that since
we consider only linear polarization states, S(3) = 0.

'https://www.sony-semicon.co. jp/e/products/IS/industry/technology/polarization.html


https://www.sony-semicon.co.jp/e/products/IS/industry/technology/polarization.html

Pico projector

Motorized linear
polarizer

Figure 1. Acquisition system prototype.

We mount a linear polarizer in front of the projector to generate polarized light. The camera and projector are mounted
on a rotating wheel so that their positions can be precisely exchanged. The distance between the camera and light source is
around 17.5 cm. All moving parts of our system (i.e., the rotating wheel and the light source polarizer) are controlled with
motorized rotators; our acquisition procedure is fully automated. The distance between our capture system and the scene is
about 50 cm. This distance is chosen based on the camera focal length. The sizes of objects captured are between 5 to 25 cm.

System Calibration. Both the camera and projector are calibrated geometrically and radiometrically. For geometric cal-
ibration, we measure the intrinsic and extrinsic parameters of the camera and projector [4] in order to extract their relative
positions. For radiometric calibration, we compensate for light anisotropy and camera response function using the method
of Janko er al. [2]]. We also calibrate the light source polarization state with respect to the camera’s. Specifically, we place
a mirror in front of the acquisition system to allow the camera to capture an image of the light source. We then turn the
polarizer in front of the light source and observe the polarization image captured by the camera. When I is at its darkest,
we consider the light source’s angle of polarization to be 0°. When I° is at its darkest, we consider the light source’s angle
of polarization as 90°.

Acquisition Procedure. A reciprocal pair is captured by rotating the wheel 180°. At each position in the pair, we capture
two polarization images under 0° and 90° polarized light by turning the polarizer in front of the light source. Hence, we have
4 polarization images in a reciprocal pair (captured under two camera positions and there are two lighting conditions in each
position). Each polarization image can be decoded into four directional components (i.e., I°, I°°, I*5, and I'3%). The total
acquisition time of one reciprocal pair is about 2 minutes. Additional reciprocal pairs can be captured by rotating the wheel
to a new position and repeating this procedure.

3. Additional Experimental Details and Results
In this section, we provide additional experimental details and surface reconstruction results.

3.1. Additional Experimental Details

All our experiments are run on a laptop computer with Intel Core i7-8750H processor (2.2GHz) and 16GB memory. Our
surface reconstruction algorithm is implemented in Matlab without acceleration. The running time of our reconstruction
algorithm is about 20 mins for one pair, 23 mins for two pairs, and 26 mins for three pairs. The execution time does not
increase significantly with the number of reciprocal pairs. This is because the pair number affects only the dimension of
the coefficient matrix W. The complexity of the graph-cut-based depth optimization does not increase when more pairs are
used. Instead, the computation overhead on using more numbers of pairs mainly come from accessing data and the SVD
decomposition of W.
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Here we also clarify the number of samples we use to compute the mean angular error (MAE) of the normal estimation.
This number varies among different target objects. Specifically, in the synthetic experiments, the total number of samples is
29,256 for the Stanford bunny scene, 31,550 for the monk scene, 25,519 for the sphere scene, 103,057 for the dragon scene,
100,782 for the Buddha scene, 87,097 for the warrior scene, and 93,146 for the armadillo scene (results for the last four
scenes are shown in Fig. 2). In the real experiments, the total number of samples is 79,793 for the ball scene and 63,911 for
the corner scene.

3.2. Additional Synthetic Results

Fig. [2| shows our normal and 3D surface reconstruction results on four additional 3D models. We use different materials
from the KAIST pBRDF dataset [[1]]. We show the rendered model in conventional rendering mode, rendered directional
polarization images that emulates the data captured by a polarization camera, our recovered normal map and 3D surface.
We evaluate the normal estimation with per-pixel angular error and the mean angular error (MAE) in degree. Here the
reconstruction results are computed with two reciprocal pairs.

Rendered Model Rendered Images Recovered Normal Map Normal Error Recovered 3D Surface
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Figure 2. Additional results on synthetic data.

We show additional evaluation of our method with respect to different types of materials in Fig. [3]and Table 1. Here all
experiments are performed on a sphere model. We use six materials from the KAIST pBRDF dataset [1]]: Spectralon, Chrome,
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Gold, Plastic POM, Black Billiard, and Ceramic ZrO5. We also compare the performance of our method with respect to the
number of pairs (one pair vs. two pairs). Fig. [3|shows the cross-sections of our recovered surfaces in comparison with the
ground truth. Table 1 reports the MAE of normal estimation for different types of materials.
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Figure 3. Reconstruction results of our method when using one and two reciprocal pairs for different types of materials. Here we show
the cross-sections of reconstructed surfaces in comparison with the ground truth, color images of the sphere rendered with the specific
material, and estimated normal maps.

Materials 1-Pair 2-Pair
Spectralon 17.6963  2.2087
Chrome 20.0153 9.4524
Gold 18.0669 7.5412
Black Billiard || 18.4281 6.0594
ZrOy 8.5610 1.0912
Plastic POM 8.8094  0.8978

Table 1. Mean angular error (in degree) of the normal estimations with respect to different types of materials.

3.3. Additional Real Results

Fig. @] shows our recovered normal and 3D surfaces rendered in two different viewpoints. We also show close-up views of
the recovered surfaces to highlight details. The results shown in Fig. ] are recovered using two reciprocal pairs.

Fig. [5] shows additional examples of our proposed image decomposition. Here we show decomposition results of objects
made with different materials. In each example, we show the intensity image (before decomposition), the three composed
components (i.e., specular-polarized, diffuse-unpolarized, and diffuse-polarized), as well as the angle of polarization (AoP)
computed with the diffuse-polarized component (“diffuse AoP”) in comparison with the AoP computed with the image before
decomposition (“overall AoP”’). We can see that the diffuse AoP computed with diffuse-polarized component better encodes
the surface normal. However, this property varies among materials.

Fig. [] shows comparisons between our one-pair and two-pair reconstruction results. We can see that our one-pair re-
construction results has significant errors when the AoP is close to 90°; this is where the polarimetric constraint becomes
unstable. By comparison, the two-pair results are able to recover fine surface details such as the bird feather and folded paper
texture on the dinosaur.
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Figure 4. Additional surface reconstruction results on real scenes. Here the results are computed using two reciprocal pairs. From left to
right: model photograph, recovered normal map, recovered 3D surface under two different viewpoints, and a close-up view of the recovered
3D surface.
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Figure 5. Additional results for our proposed image decomposition.
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Figure 6. Additional results on comparison between the one-pair and two-pair reconstruction.

4. Failure Examples

Fig. [7|shows two failure examples on transparent and concave surfaces with strong inter-reflection. The toy car windows
are made of transparent acrylic glass. Our reconstruction fails at the window glasses because the reflected light is weak. The
bowl scene has strong inter-reflection that results in caustic patterns formed on the surface, which our system is unable to

handle as well.
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Figure 7. Two failure examples: a toy car (with transparent glass) and a bowl (with strong inter-reflection).

Caustics
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