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Abstract—The goal of image pre-compensation is to process an image such that after being convolved with a known kernel, will
appear close to the sharp reference image. In a practical setting, the pre-compensated image has significantly higher dynamic range
than the latent image. As a result, some form of tone mapping is needed. In this paper, we show how global tone mapping functions
affect contrast and ringing in image pre-compensation. We further enhance contrast and reduce ringing by considering the visual
saliency. Specifically, we prioritize contrast preservation in salient regions while tolerating more blurriness elsewhere. For quantitative
analysis, we design new metrics to measure the contrast of an image with ringing. Specifically, we set out to find its “equivalent
ringing-free” image that matches its intensity histogram and uses its contrast as the measure. We illustrate our approach on projector
defocus compensation and visual acuity enhancement. Compared with the state-of-the-art, our approach significantly improves the
contrast. We also perform user studies to demonstrate that our method can effectively improve the viewing experience for users with
impaired vision.
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1 INTRODUCTION

A LL projectors introduce some form of visual blurring due
to its optics and possibly non-planar projection surface.

One way to reduce this problem is to first characterize its blur
(defocus) kernel and preprocess the image such that the resulting
projected image is sharp. The preprocessing step is called image
pre-compensation.

More generally, image pre-compensation is a long standing
problem in image processing with numerous applications in com-
puter vision and graphics. Given a sharp reference image I and the
blur kernel or point spread function (PSF) K, the goal is to find
a “pre-compensated” image J which, after being convolved with
K, will appear close to I . In the projection defocus compensation
example above, by projecting J , the actual perceived image should
appear nearly focused.

Pre-compensation vs. Deblurring. At first glance, image pre-
compensation may resemble image deblurring as both can be
viewed as “deconvolution”. The two problems, however, are
inherently different. In image deblurring, there always exist some
“ground truth” J to produce I under kernel K. The ill-posedness
of deblurring rises from the invertibility of K, i.e., if K is not
invertible, there exist multiple J that can produce the same I . To
resolve this ambiguity, classical Wiener filter [1] uses regulariza-
tion to enforce invertibility whereas more advanced solutions add
priors such as gradient sparsity [2], [3], [4], [5], edge sharpness
[6], [7], [8] or new irradiance-based blur model [9] to constrain
the solution.

In image pre-compensation, there usually does not exist any
valid solution J . In projector defocus compensation for example,
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the convolution kernel is a low pass filter that removes the high
frequency components of J . J is expected to preserve sharpness
even after being blurred. Therefore, the problem is ill-posed in that
no “ground truth” solution exists.

Dynamic Range Problem. A serious problem in image pre-
compensation is the significant increase in dynamic range. Assume
K is invertible, conceptually J can be directly computed as

J = I ⊗K−1 (1)

where ⊗ denotes convolution. Consider a randomly generated 1D
invertible kernel and a 1D image of a step edge [0, 1]1. The
resulting J has range [−2.9, 4.9], as shown in Fig. 1. In the
projector defocus compensation case, we will need to use J as the
input to the projector and therefore we will have to first compress
the rang (tone map) J to [0, 1].

The simplest tone mapping function is linear range compres-
sion. In the simple 1D example above, if we apply linear tone
mapping on J as l(J) , the resulting I = l(J) ⊗ K will have
dynamic range [0.4, 0.6], much narrower than its original one
[0, 1], as shown in Fig. 1. In the projector defocus case, it will
lead to severe contrast loss. More sophisticated tone mapping
such as power function slightly broadens the dynamic range
and contrast of I but at the same time introduces ringing. Most
previous approaches assume relatively small kernels K and resort
to optimization schemes such as steepest descent [10] and Wiener
filters [11], [12]. However, these techniques are less effective on
larger kernels. By far, only a handful of techniques address the
role of tone mapping functions in image deconvolution/deblurring
[9], [13], [14] while the analysis in image pre-compensation is
largely missing.

We believe our paper is the first to systematically study how
the tone mapping function affects ringing and contrast in image
pre-compensation. In this work, we focus on global tone mapping
functions. We first show that linear tone mapping completely
eliminates ringing but incurs severe contrast loss. In contrast,

1. In this paper, we assume the display’s dynamic range is [0, 1]
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Fig. 1. Effect of simple linear pre-compensation. The PSF can be from a typical projector, with the input image being of LDR (low dynamic range).
Top row: With no pre-compensation, the step edge image is blurred. Bottow row: The pre-compensated image of a step edge under an invertible
kernel incurs a significant increase in dynamic range (HDR, or high dynamic range). Linear tone mapping produces a ringing-free sharp result but
significantly reduces the scale (contrast) of the step.

non-linear tone mapping functions such as power curves slightly
enhances contrast but introduces ringing. To conduct a quantitative
analysis, we design new metrics to measure the contrast of an
image with ringing. Specifically, we set out to find its “equivalent
ringing-free” image that matches the intensity histogram and uses
its contrast as the measure. Our approach hence enables reliable
comparisons between different tone mapping functions as well
as effective constructions of specific tone mapping functions to
achieve a target contrast.

We demonstrate our technique on two important applications:
projector refocusing and visual acuity enhancement. For projector
defocusing, we show that our technique outperforms the state-
of-the-art solutions based on steepest descent [10] and Wiener
filters [11], [12] on large kernels. For visual acuity enhancement,
our technique can improve the visual experience for people with
myopia or hyperopia when not wearing corrective lenses. Specif-
ically, we provide a simple user interface to trade-off between
ringing and contrast; this interface allows the user to adjust the
amount of ringing for generating the optimal curve. Our user
study shows that our technique is effective and comparable to
the state-of-the-art solutions [15], [16] in both visual quality and
quantitative measures.

This work extends our previous publication [17]; there is
significant improvement in algorithm design. Visual saliency is
used to customize the tone mapping function. More specifically,
contrast loss is weighted more heavily in salient for estimating
the optimal tone mapping function. This results in salient regions
having higher contrast and less ringing while the rest of the image
may be compromised by some blurriness. User studies show
preference for results of our technique over those of competing
state-of-the-art techniques.

The remainder of the paper is organized as follows: We first
review related work in Section 2. We define the tone mapping
problem in image pre-compensation in Section 3 and show how
we optimize the tone mapping function in Section 4. Content-
aware pre-compensation is described in Section 5. Experiments
and evaluations are shown in Section 5. We suggest areas for future
work in Section 6.

2 RELATED WORK

In this section, we briefly review previous state-of-the-art tech-
niques related to image pre-compensation.

Image Deconvolution. Image pre-compensation is closely related
to the image deconvolution problem because both involve kernel
inversion. Image deconvolution is widely used in image restoration
for removing blur [2], [3], [18] and/or noise [19], [20]. Classical
algorithms include the Richardson-Lucy method [21] and Wiener
deconvolution [1]. Richardson-Lucy [21] models image noise as
a Poisson distribution. Wiener deconvolution [1] imposes the
Gaussian assumption for both noise and image gradients in order
to enforce kernel invertibility. Priors such as gradient sparsity [2],
[3], [4], [5], edge sharpness [6], [7], [8] or irradiance-based blur
model [9] have been used to constrain the deconvolution problem.
More recently, Xu et al. [22] propose a deep convolutional neural
network for image deconvolution.

Image deconvolution has also been used for improving the vi-
sual acuity for users with vision impairment. For example, Alonso
et al. [15], [23] use the classical Wiener deconvolution to compute
the pre-compensated image for display on a computer screen and
discuss how contrast loss affects the user experience. They further
improve the viewing experience through edge enhancement [24].
More recently, Montalto et al. [25] use constrained total varia-
tion to pre-correct images for observers with visual aberrations.
Although these approaches are able to produce sharper images
for vision impaired viewer, such images suffer from significant
contrast loss (especially when the viewer’s visual aberration is
severe). By comparison, our method balances contrast and ringing
in estimating the pre-compensated image.

Projector Compensation. Projector compensation is an important
application to image pre-compensation and has been heavily
studied to improve projection quality. There are techniques that
use photometric compensation (e.g., [26], [27]) or geometric com-
pensation (e.g., [28]). The seminal works of Zhang and Nayar [10]
and Brown et al. [11] are the first to compensate defocus blurs
using image pre-compensation. Brown et al. [11] and Oyamada
and Saito [12] use Wiener filters whereas Grosse et al. [29] use
a coded aperture to improve PSF invertibility. Their techniques
work well for small kernels where the dynamic range of the pre-
compensated image is about the same as the reference image.
Zhang and Nayar [10] bypassed the tone mapping process through
constrained iterative steepest descent. At each iteration, they clamp
the latest estimation to [0, 1]. For larger kernels, the optimized
results neither guarantee good contrast or ringing suppression.
In this work, we systematically study the relationship between
contrast and ringing in image pre-compensation and propose to
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strike a balance by non-linear tone mapping.

Computational Displays. There are also hardware solutions for
compensating for the visual blurriness, namely through the use
of computational displays/projectors. A comprehensive survey
on customized computational devices is provided in [30]. The
systems of [16], [31], [32] are most related to blur compensation.
Pamplona et al. [31] design a special computational display
using multiple LCD layers. Their method effectively enhance the
contrast of pre-compensated images. However, their device cannot
display color images and the field-of-view is very limited. Huang
et al. [16], [32] develop a multilayer pre-filtering on a ultra-
high dynamic range light field display to enhance contrast. All
these solutions use simple tone mapping functions and rely on
the displays themselves to enhance contrast. By comparison, our
approach is a software content-adaptive approach that improves
the visual quality of pre-compensated image through a global non-
linear tone mapping function.

3 TONE MAPPING IN IMAGE PRE-COMPENSATION

We first study how tone mapping affects the dynamic range,
contrast, and ringing in image pre-compensation. The phenomena
of significant dynamic range stretch in image deconvolution has
been widely documented in signal processing [33] and computer
graphics/vision literature [10], [15], [16], [32]. Briefly, the stretch
is due to matrix inversion.

Recall that the convolution kernel K can be written in form
of a Toeplitz matrix with block-circulant-with-circulant-block
(BCCB) structure which can be diagonalized by singular value
decomposition (SVD) asK = UΛV ∗, where U and V are the left
and right singular vectors and Λ is a diagonal matrix composed
of the square roots of eigen values. Let λmin be the minimum
eigen value in Λ. Since the eigen values of K−1 are the reciprocal
of K’s, the maximum in Λ′ is then λ′max = 1/λmin. If λmin is
close to zero, λ′max can be very large, resulting range expansion
in J . This implies that J can be of a much higher dynamic range
(HDR) and therefore cannot be “physically” implemented, e.g.,
used as an input to the projector. The question is then how to
map dynamic range of J to [0, 1] (normalized version of the usual
range [0, 255]).

We first define our notations. Assume the sharp refer-
ence image I has range [0, 1] and the computed J has
range [min(J),max(J)]. Given a tone mapping function f :
[min(J),max(J)] 7→ [0, 1], we map J to Jf as the final pre-
compensated image and denote the resulting convolution result as
If = Jf ⊗K = f(J)⊗K. An ideal f should produce If ≈ I .
We summarize our notations in Table 1.

3.1 Linear Mapping: The Baseline Performance
As shown in the example of Fig. 1, the simplest f is the linear
compression function l:

Jl = l(J) =
J −min(J)

r
, (2)

where r = max(J) − min(J), i.e., the span of the dynamic
range. Convolving Jl with K, we have Il as

Il = l(J)⊗K =
(I − µ)

r
, (3)

where µ = min(J) ⊗K is a constant. Il is a shifted and scaled
version of I , and therefore should not contain any ringing effect.
However, it suffers from significant contrast loss.

TABLE 1
Table of Notations

Symbol Description
I Reference sharp image
K Blur kernel
J Pre-compenstated image before tone mapping
l Linear compression function
s Our proposed “s” shaped mapping function
f General tone mapping function
Jf Tone mapped pre-compensated image (Jf = f(J))
If Tone mapped restored sharp image (If = f(J)⊗K)
m Slope of a linear tone mapping function
r Dynamic range span
c Image contrast
ζ Contrast factor
H Image histogram
IRF Equivalent ringing free image
Γ Ringing measurement

For a ringing-free image I , we can define its contrast by root
mean square (RMS) as:

c(I) =

√√√√ 1

n

n∑
i=1

(I(i)− Ī)2, (4)

where n is number of pixels and Ī is the average intensity value.
Since Il is ringing free, we can compute its contrast factor ζ

with respect to I as ζ(Il) = c(Il)/c(I) = 1/r. Notice that if I is
of uniform intensity, c(I) = c(If ) = 0. In this singular case, we
define ζ(If ) = 1, indicating no contrast lost. Notice that r can
be very large even with a moderate size K. For example, in an
extreme case from the BSDS500 [34] dataset, a 5 × 5 Gaussian
kernel of σ = 2.5 (here we assume J can be obtained by Wiener
filter) results in r = 17, i.e., the contrast loss is significant (ζ =
1/17). In this paper, we use Jl as the baseline result and compare
it with other tone mapping functions.

3.2 General Tone Mapping
For a general tone mapping function, we assume it is constructed
by composing an additional tone mapping function f : [0, 1] 7→
[0, 1] onto the baseline result Jl. This significantly simplifies our
analysis. For example, many classical tone mapping functions such
as Gamma curves can be directly modeled using f . The final tone
mapping function hence is f◦l = f(l(J)) = f(Jl) and we denote
Jf as the pre-compensated result and If the perceived image.

General Linear Mapping. Let us first consider the general linear
mapping with truncation:

Jf =


0, 0 ≤ Jl < − b

m

mJl + b, − b
m ≤ Jl ≤

1−b
m

1, 1−b
m < Jl ≤ 1

(5)

When no truncation occurs, we have

If = (mJl + b)⊗K = mIl + δ (6)

where δ = b⊗K is a constant. Similar to the baseline case, If is
also ringing-free and its contrast factor is

ζ(If ) =
c(If )

c(I)
=

c(If )

r · c(Il)
=
m

r
(7)

m = 1 corresponds to the baseline function l. If m < 1, c(If ) <
c(Il), i.e., we will lose more contrast. If m > 1, c(If ) > c(Il),



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2839115, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

lo
g
 c

o
u
n
ts

Histograms

PSF

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

lo
g
 c

o
u
n
ts

Histograms

Fig. 2. Histograms of pre-compensated natural images. (a) Histograms of five natural images from BSDS500 [34] pre-compensated by one invertible
kernel. (b) Histograms of one natural image pre-compensated using six different kernels. Notice that the histogram changes more dramatically over
different kernels than over different images.

we will gain contrast. However, when m > 1, many pixels in Jf
will saturate and need to be clamped to 0 or 1. As a result, although
the contrast is enhanced, If will be contaminated by clamping. We
denote the general linear mapping without truncation as fm (m is
the slope) and we will use it to model the contrast on ringing-
corrupted images.

Non-linear Mapping and Ringing. When f is non-linear, If
will induce ringing. The cause of ringing can be explained in the
frequency domain. Assume the PSF K at a specific frequency
ωn is an. Therefore, the corresponding coefficient of K−1 at
frequency ωn is 1/an. Let I be a step edge function and its
corresponding Fourier coefficient at ωn is υ/n for n 6= 0, where
υ is some constant. By Eqn. 1, the coefficient of J at frequency
ωn is υ/n · 1/an.

If f is a linear function, the coefficient of If at frequency ωn
will be κ · υ/n · 1/an · an = κυ/n, where κ is a constant scaling
factor introduced by f . Therefore, the spectrum of If will be a
scaled version of I , i.e., If will be contrast reduced step edge
function and there will be no ringing artifacts, which is consistent
with our conclusion in the linear case.

If f is a non-linear, Farid [35] proved using Taylor series that
the coefficients at frequency ωn for Jf will be scaled non-linearly
and non-uniformly, i.e., it will no longer be a scaled version of
υ/n · 1/an and convolving it with K will not cancel out an. As
a result, If will no longer be a step edge function but a signal
corrupted by non-uniformly scaled high frequencies. Visually, it
will exhibit ringing artifacts. Similar analysis has been carried out
in [14].

Effect of Display/Projector Response Function. Eventually,
the pre-compensated image is shown on a display or projector
for viewing. The emitted irradiance received by viewer will go
through a display response function. Since such response func-
tions are always non-linear, the final perceived image by viewer
will exhibit stronger ringing artifacts because the high-frequency
components of the output signal will be non-uniformly scaled. As
a result, it is critical to compensate the display response function
before showing the pre-compensated image.

In our experiments, we perform photometric calibration for
LCD display and projector using a color checkerboard. We
find correspondences between input image intensity and output
irradiance and linearize the mapping. Technical details of this
calibration process will be described in Section 6. We apply the
reverse response function to compensate the non-linearity and re-

duce ringing artifacts in the final output image. Experiments show
that by compensating the non-linear projector response curve, the
perceived images have higher contrast and less ringing. Please
note that this procedure is designed for linear images captured
by digital cameras. To combine better viewing experience with
minimized ringing, a pre-calibrated non-linear display response
function is applied to the original sharp image prior to our pre-
compensation algorithm. (The response function is based on the
pre-calibrated quadratic equations described in Section 6.1.)

3.3 Disambiguating Contrast from Ringing

The existence of ringing poses significant difficulty in measuring
contrast. Since ringing appears as oscillating patterns, we cannot
directly apply Eqn. 4 as the contrast measure. Specifically, a
low contrast image with severe ringing can still produce large
RMS contrast (Eqn. 4). In principle, the contrast of a gray-level
image should not be modified by ringing, since this artifact does
not introduce additional meaningful content. However, the RMS
contrast will be artificially boosted due to intensity variance. Al-
ternative contrast definitions such as Weber contrast or Michelson
contrast [36] that consider the minimum and maximum luminance
are not able to disambiguate actual contrast from ringing. We are
not aware of work done on measuring contrast under ringing.

The term “contrast” characterizes a group behavior of pix-
els. We consider the intensity histograms of the baseline pre-
compensated result Jl and the general tone mapped result Jf . Our
key observation here is that Jl contains ringing due the Gibbs
phenomenon by deconvolution. Further, deconvolution behaves
as derivatives of a natural image, and as such, the intensity
histogram H(Jl) follows the Laplacian distribution. In Fig. 2(a),
we randomly select 5 images from the BSDS500 database [34]
and compute their pre-compensated images using a fixed kernel.
In Fig. 2(b), we fix the image but apply 6 different kernels to pre-
compensated the image. The intensity histograms of the resulting
pre-compensated images consistently follow the Laplacian distri-
bution. More examples are included in the supplemental material.

Next, let us consider how a tone mapping function f trans-
forms H(Jl). For the linear function fm, the offset b shifts the
histogram whereas the slope m stretches it. In the non-linear
case, we can conduct a first order approximation to f by using
the tangent line at the mode of H(Jl) (i.e., the most frequent
intensity). This leads to a new contrast factor measure under an
arbitrary tone mapping function f : we first compute H(Jl) and
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locate mode Ĵl; next, we compute the tangent line fm̂ on f at
point Ĵl; finally, we use fm̂ to linearly tone map Jl to Jfm̂ .

Since fm̂ is linear, Ifm̂ = Jfm̂ ⊗K does not induce ringing.
We call Ifm̂ the “equivalent ringing free” image of If and denote
it as IRF. We then compute the contrast of IRF using Eqn. 4 and
treat it as the contrast of If . Moreover, computing IRF has another
use: we now can quantitatively measure ringing of If as Γ = |If−
IRF|. This is consistent with the observation that ringing depends
on both the input pre-compensated image Jl (by which we locate
the mode of H(Jl)) and the tone mapping function f (by which
we compute the tangent function at the mode). Fig. 3 shows the
complete pipeline for measuring the contrast and ringing under an
arbitrary f .

4 TONE MAPPING FUNCTION SELECTION

Our quantitative measures of contrast and ringing enables reliable
comparisons between various tone mapping functions and feasible
constructions of tone mapping function to achieve specific con-
trast.

4.1 Contrast-Priority Tone Mapping
We first show how to construct a tone mapping function to achieve
a specific contrast. Given a desired contrast factor ζ , we can
directly compute the slope m of the corresponding linear mapping
function using Eqn. 7 as m = r · ζ . Since ζ is expected to
outperform the baseline function fl and at the same time should
not exceed the contrast of the original image, we should restrict ζ
as 1/r < ζ ≤ 1 so that the m ∈ (1, r].

Our contrast measure analysis shows that, for a tone mapping
function f , if we want to maintain contrast m of If , at the
histogram mode Ĵl, f should 1) map Ĵl to Ĵl to preserve the
overall image intensity level and 2) should have the tangent slope
m at Ĵl.

Given these two conditions, we insert an anchor point P =
(Ĵl, Ĵl) with tangent m. Recall that the other two anchor points
are the endpoints P− = (0, 0) and P+ = (1, 1). Our goal is to
construct two Bézier curves, the lower half B− from P− to P
and the upper half B+ from P to P+, to construct f . To do so,
we introduce two more anchor points Q− and Q+ on the tangent
line at P to control the tangent at P− and P+. Specifically, we
can parameterize Q− and Q+ by τ− and τ+:

Q− = (Ĵl − τ− sin θ, Ĵl − τ− cos θ),

Q+ = (Ĵl + τ+ sin θ, Ĵl + τ+ cos θ),
(8)

where θ = arctan(1/m) and 0 < τ− ≤ Ĵl/ cos θ and 0 <
τ+ ≤ (1 − Ĵl)/ cos θ. As a result, P−, Q−, and P form Bézier
curve B− and P , Q+, and P+ form Bézier curve B+ as

B−(t) = (1− t)2P− + 2(1− t)tQ− + t2P,

B+(t) = (1− t)2P + 2(1− t)tQ+ + t2P+,

where 0 ≤ t ≤ 1.

(9)

By adjusting τ− and τ+ and hence Q− and Q+, we can
control the amount of ringing through the curvature of the curves
(Section 3.3) while maintaining the desirable contrast, as shown
in Fig 4. We call this set of functions the adaptive contrast-
priority tone mapping (analogous to shutter/aperture-priority in
photography).

Notice that the upper-half Bézier segment B+ is convex and
the lower-half B− is concave, forming an “S” shape. We therefore
denote the special mapping function as s. Fig. 4 shows the results
by using different s functions. The reason that the S-shaped curve
s achieves higher contrast factor than the baseline mapping l can
also also explained using Jensen’s inequality: since the upper-half
(the high intensity portion) is convex, by Jensen’s inequality we
have

Is = B+(Jl)⊗K > B+(Jl ⊗K) > Jl ⊗K = Il. (10)

This implies that the brightest pixel in Is will be brighter than
the one in the baseline result Il. Similarly, since the lower half is
concave, the darkest pixel in Is will be dimmer than the one in Il.
Therefore, the overall dynamic range of final outputs using s will
be greater than the one using l.

Next, let us compare s with the classical power mapping
function. Recall that the power function, i.e., g(x) = xγ , can
be either convex when γ > 1 (denoted as g+) or concave when
γ < 0 (denoted as g−) where both types can be used as the tone
mapping function. For g+, similar conclusion of Eqn. 10 holds,
i.e., the brightest pixel in Ig+ will be brighter than the one in Il.
However, since g+ is convex everywhere, the dimmest pixel will
also be brighter than the baseline result. Therefore, the overall
dynamic range is only marginally expanded. Similar arguments
apply to g− which uniformly brings down the intensity for all
pixels. Our s function, in contrast, can be viewed as combining
the advantage of high intensity potion of g+ and low intensity
portion of g− and hence outperforms both.
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Fig. 4. Left: The construction of an s function. Right: Tone mapping the pre-compensated result using different s functions: (a) The original image
and its defocused projection without image pre-compensation; (b) & (c) are tone mapped and final perceived results by applying different s functions.

4.2 Trading Off between Contrast and Ringing
Recall that the linear mapping fm produces ringing free result IRF.
Therefore, we can find the optimal s function that is close to IRF.
Specifically, we minimize the following objective function:

O(τ−, τ+;m) = ||IRF(m)− Is(τ−, τ+;m)||+ α
1

m
. (11)

The first term measures the ringing in terms of the different
between Is and its equivalent ringing-free IRF. The second term
1/m measures the contrast, i.e., the larger m (1 < m ≤ r),
the higher the contrast. Finally, α is the parameter that trades off
between ringing and contrast. A larger α prefers more contrast
(larger m) whereas a smaller α prefers ringing-free (the curve will
be closer to being linear). In Section 6.2, we conduct a study to
choose preferred α for specific types of scenes.

For a given α, we can use the Levenberg-Marquardt (LM)
algorithm [37] to minimize the objective function. Specifically, we
initialize m to its maximum, i.e., m = r as initial value and find
the τ− and τ+ that produce the least ringing by minimizing the
first term. We then use the resulting τ− and τ+ as initial values to
optimize m. We apply several iterations to obtain the satisfactory
results (the optimization converges within seven iterations in most
of our experiments). Fig. 5 shows the optimized results of different
α.

5 CONTENT AWARE PRE-COMPENSATION

The human vision system deems some regions in a scene to be
more important (i.e., more salient) than others. Based on this
observation, we propose to prioritize the contrast preservation in
salient regions in order to improve the quality of perceived pre-
compensation image. Since visual saliency is determined by image
content, we call our algorithm content aware pre-compensation. In
this section, we describe our algorithm in details.

Given sharp reference image I , we first detect the salient
regions that may attract more attention. Saliency detection [38]
is a well studied area in computer vision; it has been used in
applications such as object detection and recognition [39], visual
tracking [40], and content-based image segmentation [41]. Many
computational saliency models have been proposed. A compre-
hensive survey can be found in [42]. In our work, we adopt the
graph-based visual saliency (GBVS) detection algorithm [43], [44]
to find salient visual content in the sharp reference image. This
algorithm simulates human eye fixation with good fidelity.

2.0x103=α

1.0x103=α

5.0x103=α

Original

Fig. 5. Balance between contrast and ringing. The top two rows show
the reference image and the blurred result if we do not pre-compensate
the input. The bottom three rows show the results under different tone
mapping functions. Smaller α leads to more contrast loss but incurs
minimal ringing. Larger α enhances the contrast but incurs more ringing.

We then use the saliency mask M to separate the reference
image I into salient image (foreground) IM and non-salient
(background) image IM̄ , where IM = I ∗M and IM̄ = I ∗ M̄
(M̄ is the inverse mask: M̄ = 1−M ). We apply a Gaussian filter
on the original saliency mask in order to achieve smooth transition
from foreground to background; for a 1200× 900 image, we use
a 51 × 51 Gaussian filter with σ = 8. We pre-compensate the
salient image IM and use its contrast loss to guide the optimization
of the adaptive contrast-priority tone mapping function in order
to preserve the contrast of salient regions at best. In particular,
the pre-compensated salient image is computed by applying the
inverse blur kernel: JM = IM ⊗K−1.

Since JM contains only salient content, we then combine JM
with the background image to obtain an initial estimation of pre-
compensated image Ĵ = JM + IM̂ . Note that while the dynamic
range of Ĵ exceeds the limit of [0, 1] due to deconvolution, the
range is dominated by the salient image. Comparing the naı̈ve
approach that treat the entire image equally, our saliency-based
approach eliminates the contrast loss caused by pre-compensating
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Algorithm 1: Content Aware Image Pre-Compensation
Input : Reference Sharp image I & blur kernel K
Output: Pre-compensated image J
Compute a saliency mask M from IM̄ ;
Compute the inverse mask: M̄ = 1−M ;
Separate salient image IM and background image IM̄ ,
where IM = I ∗M and IM̄ = I ∗ S̄;
Pre-compensate salient image JM = IM ⊗K−1;
Composite an initial pre-compensated image
Ĵ = JM + IM̄ ;

Compute the dynamic range of Ĵ : r = max(Ĵ)−min(Ĵ);
Linear compress Ĵ : Ĵl = l(Ĵ);
Initialize an equivalent ringing-free image IRF (m0):
m0 ← r
IRF (m0)← (m0Ĵ + b)⊗K;
Iteratively optimize the adaptive contrast-priority tone
mapping function s until convergence or reaching the
maximum iteration.

while k < itermax and O(τ−, τ+;m) < ε do
Fix mk, solve

min
τ−
k+1,τ

+
k+1

||IRF(mk)− Is(τ−k+1, τ
+
k+1;mk)||;

Fix τ−k+1, τ
+
k+1, solve min

mk+1

||IRF(mk+1)−

Is(τ
−
k+1, τ

+
k+1;mk+1)||+ α 1

mk+1
;

k = k + 1;
end
Compute and output the final pre-compensated image
J = s(Ĵl)

the background image and hence better preserve the contrast of
salient image content.

We first use the baseline mapping function l to lin-
early compress the range of Ĵ to [0, 1]. The linearly com-
pressed pre-compensated image is computed as Ĵl = (Ĵ −
min(Ĵ))/(max(Ĵ) −min(Ĵ)), and it suffers from severe con-
trast loss. Next, our goal is to find the optimal contrast-priority
tone mapping function in order to enhance the contrast. As de-
scribed in Section 4.1, our contrast-priority tone mapping function
or the S-shaped curve is able to achieve a specific contrast. There-
fore, we use best possible contrast of the pre-compensated image
to initialize an equivalent ringing-free image IRF . In particular,
the initial slope of the corresponding linear mapping function is
computed as m0 = r · ζ , where r = max(Ĵ) − min(Ĵ) is
the dynamic range of Ĵ and we use the maximum contrast factor
(ζ = 1).

Then we iteratively update the two sets of parameters in
the contrast-priority tone mapping function (τ−, τ+) and m to
balance between contrast and ringing. The optimization processed
is described in Section 4.2 . As a result, we obtain an optimized
contrast-priority tone mapping function s based on the contrast of
the pre-compensated salient image.

Finally, we apply the optimized s function onto Ĵl to compute
the pre-compensated image that best preserves the contrast of
salient image content J = s(Ĵl). The complete process of our
content aware pre-compensation is summarized in Algorithm 1.

Projector

Camera

Coded

Aperture

Screen

Fig. 6. Experimental setup on projector defocus compensation.

6 EXPERIMENTS

In this section, we validate our content aware pre-compensation
algorithm on two applications: projector defocus compensation
and visual acuity improvement.

6.1 Projection Defocus Compensation
A projector acts as a camera with an ultra-wide aperture and
therefore can only focus at a fixed depth. All projectors suffer from
certain blurriness due to imperfect optics or non-planar projection
surface. Our algorithm is the first that is able to compensate such
blurriness by actively balancing the image contrast and ringing
artifacts. In addition, our algorithm prioritizes the contrast of
salient visual content.

To validate our approach, we use an Epson Powerlite 3LCD
projector to display images on a projection screen; we adjust the
projector to be slightly out of focus. We mount a coded aperture
(as shown in Fig. 7) for generating invertible PSFs. To estimate
the PSFs or blur kernels for image pre-compensation, we project a
36×64 dot array and capture its image. To suppress sensor noise,
we capture ten images and take the average. The defocus patterns
of the dots are used as blur kernels. To account for chromatic
aberration, we consider the PSFs for each color channel separately.
On the acquisition side, we use a Canon 60D camera to capture
the projected images to simulate the perceived image by a human
viewer. We focus the camera on the projection screen and assume
defocus is solely caused by the projector. Our experimental setup
is shown in Fig. 6.

Projector Response Function Calibration. As discussed in
Section 3.2, the non-linearity of projector response function causes
ringing artifacts. In order to compensate for the response function,
we calibrate the projector response function and apply the inverse
function on the displaying image for compensation. Specifically,
we project color checkers to establish correspondences between
input intensity and output irradiance. In order to eliminate the ef-
fect of gamma correction (power function with γ as the exponent),
we set γ = 1 in the projector settings.

Since the projected color field is non-uniform, we calibrate
the response function based on local windows. Specifically, we
project each color in the color checkerboard one by one in
full resolution. We segment the projected image into small non-
overlapping windows of 100 × 100 (in pixels) and estimate
the response function per window. For each window, we as-
sume the color is uniform and average the intensities within
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Reference Sharp Image Blurred Image Zhang & Nayar [10] Linear Tone Mapping Our Solution

Fig. 7. Projector defocus compensation results. From left to right: reference sharp images; blurred images (without pre-compensation) captured by a
camera; pre-compensation results by Zhang and Nayar’s algorithm [10], which preserves the contrast but exhibits strong ringing; pre-compensation
results by linear tone mapping, which avoids ringing but loses contrast; our pre-compensation results enhance the contrast with only slight ringing.

the window to reduce noise. Our non-linear response function
per window consists of three per-channel quadratic equations
{Ro, Go, Bo} = F{Ro,Go,Bo}(Ri, Gi, Bi); for the red channel,
it is

FRo
(Ri, Gi, Bi) = a1R

2
i + a2G

2
i + a3B

2
i + a4RiBi

+a5RiGi + a6BiGi + a7Ri + a8Gi + a9Bi + a10,
(12)

where Ro is the observed red channel intensity, Ri, Gi, Bi are the
corresponding ground truth, and {a1, ..., a10} are the quadratic
equation coefficients. FBo and FGo are similarly defined with
different coefficients. To determine these quadratic equations, we
estimate their coefficients by solving a large over-determined
linear system. Specifically, for each non-linear response, we need
to solve 30 coefficients (i.e., 10 for each per-channel quadratic
equation) and 72 equations can be constructed by projecting 24
colors in the standard color checkerboard.

Although the projector has a resolution of 1920 × 1080, we
use the center area of 1200 × 900 to avoid vignetting artifacts at
the image periphery caused by our coded aperture. As a result,
we obtain 108 non-linear responses (one for each window) and
we apply the inverse response functions on the pre-compensated
image to reduce the ringing artifacts caused by the non-linear
functions.

Evaluation. We compare the results of our proposed content-
aware image pre-compensation algorithm with those of competing
state-of-the-art techniques. Given a sharp reference I , we first
apply the saliency detection algorithm described in [43], [44]
to separate salient image content and background. Then, we
apply Wiener filter on the salient image and combine with the
background image to obtain an initial pre-compensated image J ,
where the dynamic range of J exceeds the display limit of [0, 1].
We then linearly compress J to the range of [0, 1]. To preserve
the contrast of salient content, we use the contrast loss of the pre-
compensated salient image to initialize an equivalent ringing-free
image and apply our optimization framework to find the optimal
contrast-priority tone mapping curve. In our experiments, we set
α = 1× 103. We run our experiments on a laptop computer with
Intel Core i7 GPU and 8GB memory. The total running time is
around 0.7s (for images with size 1200× 900) using Matlab.

Fig. 7 shows results for two representative images. Directly
using the linearly compressed pre-compensation produces images
with significant reduction in contrast. Results using steepest de-
scent [10] have enhanced contrast, but at the cost of excessive
blur. Results produced by our technique appear much sharper with
less ringing. This is because our algorithm can handle large blur
kernels while [10] only works well on small ones.

In our approach, we can use a larger α to reduce ringing at the
cost of losing contrast or a smaller α to enhance contrast at the cost
incurring more ringing. In text image result, the texts are hardly
discernible in the blurred image, while our approach is able to
restore the text with moderate contrast. More results on the natural
images are shown in Fig. 13. Here, we can see that our algorithm
significantly enhances the image contrast compared to the linear
tone mapped results while minimizing ringing. We also compare
our result with simple gamma correction (Fig 8). The gamma
correction function is applied on the linear compressed pre-
compensation image. As can be seen, correction is not effective in
enhancing contrast. This is the because it brings out either bright
or dark details while the histogram of pre-compensated image is
centered around the mean intensity value. Gamma correction is
not effective in stretching the dynamic range.

In Fig. 14, we demonstrate the effectiveness of the projector
response function correction. We show the pre-compensation re-
sults with and without response function correction. As shown in
the results, the pre-compensation results with projector response
function correction has less ringing and higher contrast. As shown
in the close-up views, text and image details appear sharper.

To quantitatively evaluate the results, we use CIE76 ∆E
metric to measure the color difference between the perceived pre-
compensation image (captured by an in-focus camera) and the
reference sharp image. We first transform the color in RGB color
into CIELAB space. Given two coordinate in CIELAB space,
(L1, a1, b1) and (L2, a2, b2), the ∆E metric is computed as the
Euclidean distance between the coordinates:

∆E =
√

(L2 − L1)2 + (a2 − a1)2 + (b2 − b1)2. (13)

Therefore, the lower the value, the closer the colors of the two
images appear. The pre-compensation results with our projector
response correction have lower ∆E.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2839115, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(a) (b)

(c) (d)

Fig. 8. Comparison with simple gamma correction. (a) Linear tone
mapping result; (b) our pre-compensation result; (c) gamma correction
result with γ = 1/2.2; (d) gamma correction result with γ = 1.8.

We also compare results of our approach with those of our
previous algorithm proposed in [17] (Fig. 15). In our previous
algorithm, visual saliency is not considered, and the whole image
is pre-compensated in one pass. Qualitatively, our results have
higher contrast and less ringing, especially on the sharp edges
(such as the wings of the parrot and dragonfly). Although our
algorithm allow more blurriness in the background, the effect is
not noticeable since the backgrounds are already out-of-focus in
the reference image. Quantitatively, we compare the results by
∆E (color difference between the simulated perceived image and
the original sharp image) and the dynamic range span r (r =
max(I) − min(I)) of the pre-compensated image. Notice that
according to Eqn. 3, the smaller r is, the less contrast loss the final
perceived image would suffer. Results produced by our solution
have smaller values of both ∆E and r, which means that our
simulated perceived images are closer to the sharp reference image
and have higher contrast.

We further perform experiments to evaluate the robustness
of our algorithm to noise in the blur kernel. Specifically, we
add different amounts of synthetic Gaussian noise (1%, 5%, and
10% of the dynamic range [0,255]) to the ground truth PSF and
use the noisy PSFs as input to our algorithm for deconvolution.
We use images in the BSDS500 dataset [34] as the input sharp
reference images and use the PSFs with various noise levels for
pre-compensation. The structural similarity (SSIM) index [45] is
used to measure quality of the pre-compensation images with the
original sharp images as reference. The SSIM values averaged
over the entire dataset is shown in Table 2. Visual results for
three representative images are shown in Fig. 9. As the PSF noise
is increased, SSIM decreases, with the pre-compsation images
having more ringing artifacts. However, even with 10% noise
added, the visual quality of the pre-compensation image is still
reasonable.

6.2 Improving Visual Acuity
There is an emerging interest on developing tailored displays for
improving visual acuity, e.g., to allow a person with myopia to
read without wearing corrective lenses. Recall that both myopia
and hyperopia can be viewed as special defocus blurs. We show

TABLE 2
Effect of PSF noise on SSIM quality metric. SSIM is averaged over 500

images taken from the BSDS500 dataset [34].

PSF Noise 1% 5% 10%

SSIM 0.8978 0.8394 0.7560

Ground Truth PSF PSFs with Noise
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Fig. 9. Effect of PSF noise. Left: original sharp images and the ground
truth PSF. Right: Pre-compensation images (with close-ups) and their
corresponding PSFs with noise (which increases from left to right,
namely, 1%, 5%, and 10%). Notice that while the quality degrades with
noise, the visual quality is still reasonable despite the noticeable ringing.

that contrast can be significantly enhanced by maneuvering the
tone mapping process and our technique is complementary to the
computational display approaches. In this section, we demonstrate
the effectiveness of our pre-compensation algorithm in improving
visual acuity.

We emulate the PSFs of myopia/hyperopia using Zernike
polynomials [46] which are widely adopted in ophthalmology. The
kernel in its radial form is defined as

Rmn (ρ) =

(n−m)/2∑
i=0

(−1)i(n− i)!
i!( 1

2 (n+m)− i)!( 1
2 (n−m)− i)!

ρn−2i,

(14)
where 0 ≤ m ≤ n and n − m is even. In our experiments,

we only consider up to the second order (n ≤ 2) terms which can
sufficiently model defocus and astigmia. Fig 12(b) shows several
examples of our PSFs that correspond to different levels of vision
degradation.

We emulate the effect of myopia by convolving sharp text
images with the PSFs and display the results on a regular LCD
display Viewsonic VA2448 with contrast ratio 1000:1. We then use
our algorithm to find the pre-compensated text images that, after

Fig. 10. Emulation of myopia by displaying blurred text. Left to right:
blurred text using the myopia kernel, result using pre-compensated
image under linear tone mapping, result using our approach.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2839115, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 11. A user study for evaluating our system. We show ten samples
out of our twenty test images. In our circle plot, each radius corresponds
to a test image. The blue point on each radius refers to the number of
users who pick the pre-compensation result of our approach and the
orange point refers to the number of users who pick the result of Ji et al.
[17]. We can see that for most images, more users prefer the results of
our approach over those of Ji et al. [17].

being blurred by the myopia PSFs, will appear readable to the user.
Compared with the projector defocus case where the reference
image I is generally a natural image with rich color and contrast,
the reference images for this application are grayscale or even
black/white to represent typical texts (e.g., displayed on Kindle).
Compared with linear tone mapping, our technique significantly
enhances the contrast as shown in Fig. 10.

User Studies. Finally, we perform a user study to test the effec-
tiveness of our approach. We have recruited 45 subjects (34 male,
11 female), with an average age of 23. Subjects perform the test
with corrected vision and the pre-compensation results are shown
on a LCD display after being blurred by their myopia PSFs. We
select 10 different myopia PSFs and 20 different images. The ten
images used are shown in Fig. 11. For each user, we perform two
sets of experiments. In the first experiment, we ask the users to
compare the pre-compensation results of our approach and Ji et
al. [17], and pick one that is more visually preferable. The goal
of this experiment is to demonstrate the effectiveness of using
saliency to enhance contrast. The user preference results are shown
in Fig. 11; for most images, more users prefer the results of our
new saliency-based pre-compensation algorithm. One exception is
Test Image 17 (this image is shown in Fig. 11). For this image,
slightly more users pick the result of Ji et al. [17]. This is probably
due the saliency detection result is not desirable (saliency masks
are shown in our supplemental material).

In the second experiment, we study the effect of our con-
trast/ringing control factor α (see Eqn. 11). α is the parameter
that trades between ringing and contrast. A larger α prefers higher
contrast whereas a smaller α tolerates more ringing-free. We have
developed an interface to allow the user to dynamically change
α and view the pre-compensation results. The users are asked to
adjust α under two scenarios: 1) given a fixed blur kernel (PSF),
adjust α for different text images; 2) give a fixed test image, adjust
α for different PSFs. For every PSF and test image pair, each
user tunes to his/her favorite α that produces the most agreeable
result. Our results are shown in Fig. 12 where (a) and (b) are
the variations of α with respect to the text images and PSFs
respectively. This study indicates that the preferable α is relatively
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Fig. 12. User preference on α. (a) For a fixed kernel, we plot the range
of preferred α across users on different test images. (b) For a fixed test
image, we plot the range of preferred α across the users on different
kernels. The red bar corresponds to the mean α.

consistent across users, although it changes with respect to the
image content and the PSF.

7 CONCLUSIONS AND FUTURE WORK

We present a new tone mapping approach for image pre-
compensation that effectively trades off between contrast and
ringing. We also provide in-depth analysis on the causes of
dynamic range burst and ringing. Furthermore, we develop a
technique to measure contrast and ringing on images in image
pre-compensation. Based on our analysis, we design a contrast-
preserving tone mapping function. To enhance contrast, we use
the contrast loss in salient regions to guide the search of optimal
contrast-preserving tone mapping function. We demonstrate our
approach on two important applications: projector defocus com-
pensation and corrective lens free visual enhancement. Compared
with the state-of-the-art, our approach not only greatly improves
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the contrast but also provides an effective interface to trade
between contrast and ringing.

Although our user study in visual acuity enhancement il-
lustrates the effectiveness of our solution, more can be done.
More specifically, the next step would be to measure the actual
myopia/hyperopia PSFs of each individual user, e.g., by using the
tailored display [31] and use the ground truth PSFs to estimate the
tone mapping function. In addition, our Bezier curve model is used
to replicate the contrast at the most frequent intensity only. If the
histogram of the pre-compensated image has multiple peaks, we
can potentially insert multiple anchor points and construct a more
complex tone-mapping function. Finally, the problem of contrast
preservation can be studied from the perspective of gradients [47].
Our tone mapping function is global and in the future, we plan to
explore integrating our contrast model with gradient histogram and
gradient domain fusion for handling local contrast enhancement.
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Fig. 13. Additional Projector defocus compensation results. From left to right: reference sharp images; blurred images (without pre-compensation)
captured by a focused camera; pre-compensation results by linear tone mapping; our pre-compensation results.
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Reference Sharp Image Without Projector Correction With Projector Correction Close-up Views

ΔE = 9.63 ΔE = 9.62

ΔE = 15.72 ΔE = 11.79

ΔE = 20.56 ΔE = 15.55

Fig. 14. We compare the pre-compensation results with and without projector response function correction. From left to right: reference sharp
images; pre-compensation results with projector correction; pre-compensation results without projector correction; close-up views in the pre-
compensated images. The CIE76 ∆E metric is used to measure the color difference; the smaller ∆E is, the better.

Reference Sharp Image Ji et al. [17] Our Solution Close-up Views
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r = 6.321
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r = 4.930

ΔE = 12.08

r = 4.930

Fig. 15. We compare our pre-compensation results with Ji et al. [17]. From left to right: reference sharp images; pre-compensation results by Ji et
al. [17]; pre-compensation results by our approach; close-up views in the pre-compensated images. The CIE76 ∆E metric is used to measure the
color difference; the smaller ∆E is, the better. r represents contrast loss; the smaller r is, the better.
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