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Structure from Motion on XSlit Cameras
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Abstract—We present a structure-from-motion (SfM) framework based on a special type of multi-perspective camera called the
cross-slit or XSlit camera. Traditional perspective camera based SfM suffers from the scale ambiguity which is inherent to the pinhole
camera geometry. In contrast, an XSlit camera captures rays passing through two oblique lines in 3D space and we show such ray
geometry directly resolves the scale ambiguity when employed for SfM. To accommodate the XSlit cameras, we develop tailored
feature matching, camera pose estimation, triangulation, and bundle adjustment techniques. Specifically, we devise a SIFT feature
variant using non-uniform Gaussian kernels to handle the distortions in XSlit images for reliable feature matching. Moreover, we
demonstrate that the XSlit camera exhibits ambiguities in pose estimation process which can not be handled by existing work.
Consequently, we propose a 14 point algorithm to properly handle the XSlit degeneracy and estimate the relative pose between XSlit
cameras from feature correspondences. We further exploit the unique depth-dependent aspect ratio (DDAR) property to improve the
bundle adjustment for the XSlit camera. Synthetic and real experiments demonstrate that the proposed XSlit SfM can conduct reliable
and high fidelity 3D reconstruction at an absolute scale.

Index Terms—Multi-perspective imaging, Generalized Structure from Motion, Camera motion estimation, Feature matching, Bundle
adjustment
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1 INTRODUCTION

A perspective camera collects rays passing through a
common 3D point (i.e., the Center of Projection or

CoP) and produces images similar to those visiable for
human eyes. However, this model is rare for insect eyes.
For example, many insects have compound eyes consisting
of thousands of individual eye units or ommatidia. Located
on a convex surface, these ommatidia can receive light from
different directions, thus enabling the compound eye to
have a very large field-of-view which is extremely helpful
for detecting fast movement. Notice that without a common
CoP, the perspective camera model no longer applies to the
compound eye. Instead, it adopts the multi-perspective model
and combines rays from different viewpoints. Despite the
incongruity of views, a multi-perspective image is able to
preserve the spatial coherence of a scene and depict its
details that are simultaneously inaccessible from a single
view within a single context.

Early works on multi-perspective stereo matching
have laid the theoretical foundation for studying multi-
perspective camera. The seminal work of Seitz [1] charac-
terizes all possible multi-perspective stereo pairs and con-
cludes that the epipolar geometry, if existing, has to be
a doubly ruled surface. Pajdla [2] reaches similar results.
Pless [3] further derives the Generalized Epipolar Constraint
(GEC) for generic camera models. Yu et al. [4] propose
the General Linear Camera (GLC) that characterizes all
possible linear multi-perspective cameras under the light
field ray space. In particular, the GLC reveals that a total of
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8 fundamental multi-perspective cameras on the basis of all
multi-perspective cameras where previous stereo matching
algorithms are directly applicable for 3D reconstruction.

Among the GLC models, the most fundamental one is
the cross-slit (XSlit) camera which captures rays passing
through two oblique line slits in 3D space, as it can be
viewed as the ”simplest” camera following pinhole projec-
tions [5]. Many traditional cameras are degenerated cases of
the XSlit camera. For example, when the two slits intersect,
it degenerates into a pinhole camera with the intersection
point being the pinhole; when one of the two slits moves to
infinity, it degenerates into the pushbroom camera; when
both slits go infinitely far, it degenerates into an ortho-
graphic camera. Furthermore, reflections and refractions can
both be modeled with the XSlit camera under caustic surface
models since the two slits can provide a special set of surface
ruling of the caustic surfaces [6].

One key advantage of the XSlit camera against other
multi-perspective cameras is that one can use off-the-shelf
optical components to construct the XSlit camera. Ji et al. [7]
construct a prototype XSlit lens using a pair of cylindrical
lenses coupled with slit-shaped apertures in place of a
single spherical thin lens. The lens can be mounted on
commodity camera to directly produce XSlit images. XSlit
defocus blurs analogous to shallow depth-of-field effects in
perspective cameras provide additional depth cues that can
help recover scene depth and design better coded aperture
imaging systems.

This paper discusses how to use the XSlit camera in
place of pinhole cameras for 3D reconstruction. In com-
puter vision, two most commonly used 3D reconstruction
techniques are stereo matching and structure-from-motion
(SfM). For the former, Ye et al. [8] proposed to rotate instead
of translate the camera to produce parallax and thereafter
conduct feature matching. In particular, they have shown
that under rotational settings which they call rotational XSlit
(R-XSlit) pair, the images form valid epipolar geometry that
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obeys the Seitz model. This significantly reduces the search
space for feature matching and fits well with many existing
stereo solutions such as graph-cut [9]. In contrast, there is
very little work on employing the XSlit camera for SfM.

The basic principles of SfM have been thoroughly stud-
ied in computer vision. The process consists of three major
steps: it first uses techniques such as SIFT [10] or SURF [11]
to extract feature points in images; next, SfM establishes
feature correspondences and subsequently conducts camera
pose estimation by solving for the fundamental matrix or
homography matrix between pairwise views; finally it con-
ducts triangulation to reconstruct 3D points and iteratively
refines the estimated camera poses. A major drawback in
perspective SfM is scale ambiguity [12] caused by the pro-
jection process, i.e., one cannot determine the actual scale of
the recovered 3D scene even with calibrated cameras [13].

We show that scale ambiguity is a singularity inherited
from pinhole cameras and can be directly eliminated by us-
ing XSlit cameras. Specifically, we demonstrate aspect ratio
distortions in XSlit images provide a vital cue on depth and
can directly resolve scale ambiguity. Yet XSlit SfM compared
with the perspective one incurs two additional challenges:
1) the XSlit projection is non-linear where the pose solver
for perspective cameras is not directly applicable; and 2)
although aspect ratio distortions are helpful for resolving
scale ambiguity, they make feature matching much more
difficult due to distortions.

In this paper, we present the first XSlit-based SfM frame-
work capable of recovering 3D scene geometry from im-
ages at an absolute scale. We explore the Depth-Dependent
Aspect Ratio (DDAR) property in the XSlit camera and
demonstrate how DDAR can be used for resolving scale
ambiguity. We first show that, similar to pinhole cameras,
there exists a fundamental matrix to correlate two XSlit
images captured by the same camera under different poses.
We show how to reduce the dimensions in the XSlit fun-
damental matrix so that absolute translation and rotation
matrices can be solved via a linear system. We further tailor
a new, robust feature matching algorithm on correlating
XSlit images under strong distortions. Finally, we propose
a novel error metric based on DDAR for bundle adjustment
to iteratively refine the estimated camera parameters and
scene geometry. Synthetic and real experiments demonstrate
that our XSlit SfM can recover both camera motions and
scene geometry at an absolute scale with high fidelity and
reliability.

For clarification, We reuse the DDAR discussion
(Sec.5.2.1) presented in our previous work [14]. Notice this
paper only re-uses the DDAR analysis from [14] for the
completeness of the bundle adjustment discussion, the prob-
lem and motivation and are completely different. The paper
aims to re-invent the SfM pipeline, which uses multiple
XSlits images for 3D reconstruction, while [14] focused on
XSlit distortion analysis.

2 RELATED WORK

Our work is closely related to SfM and multi-view geometry
for non-central cameras (the XSlit in particular). Since the
literature is huge, we only discuss the most relevant works
in this section.

SfM has been extensively studied in computer vision
and great success has been achieved in robotics [15],
autonomous navigation [16], large-scale 3D reconstruc-
tion [17], [18] etc. Most existing works rely on perspective
cameras. However, SfM from a perspective camera suffers
from scale ambiguity [19]. Conventional approaches for this
problem include using a stereo camera setup with known
baseline [15], [20] where the scale factor is determined
by triangulating feature points in the stereo pair. Clipp et
al. [21] recovered the scale by tracking features on two non-
overlapping cameras. In the case of a single perspective
camera, it is necessary to have constraints on or priors of
either the camera motion or the scene geometry to recover
the scale. Scaramuzza et al. [22] used the camera-to-ground
distance to keep track of the camera motion and estimate the
scale. Davison et al. [15] employed a pattern of known size
to compute the absolute scale of the entire scene. Pollefeys
et al. [23] utilized an additional GPS sensor to get the exact
dimension. In this paper, we exploit a unique attribute of
multi-perspective cameras, i.e., aspect ratio distortions, to
directly resolve the problem of scale ambiguity.

Remarkable progress has been made in employing mul-
tiple non-central cameras for geometry analysis. In the sem-
inar work [3], Pless derived the constraint, i.e. GEC, in terms
of the rotation and translation between camera viewpoints
imposed by point(ray) correspondences. The GEC suggests
a 17-point algorithm that could be used to solve the camera
motion linearly. Stewénius et al. [24] further proposed a non-
linear 6-point algorithm based on Gröbner-Basis. Later, Li et
al. [25] pointed out that there were degeneracies in the 17-
point algorithm for certain configurations which lead to a
family of solutions. Kim and Kanade [26] further proposed
a method to find and prove the degenerate cases of the 17-
point algorithm. An XSlit camera [27] as a general camera
collects rays passing through two oblique (neither coplanar
nor parallel) slits. The XSlit cameras exhibit unique degen-
eracy that haven’t been studied and can not be solved using
methods presented in [3], [24], [25], which we discuss in
detail in Sec. 3.2. We specifically handle the XSlit degeneracy
by exploiting the XSlit constraints and reduce the 6×6 pose
matrix to 4× 4.

Regarding multiple XSlit cameras, previous studies
mainly focused on the epipolar geometry of a pair of XSlit
cameras. Feldman et al. [28] derived a 6 × 6 fundamental
matrix using the Veronese mapping and proved that a pair
of XSlit cameras can have valid epipolar geometry if they
share a slit or the slits intersect in four pairwise distinct
points. Trager et al. [5] presented a 2 × 2 × 2 × 2 epipolar
tensor, which is sensitive to noise and not generic. Our work
is most relevant to [29], which reduced the GEC to a 4 × 4
essential matrix on reduced Plücker vectors. However, its
deduction was based on a simplified XSlit system and no
solution for relative pose was reported. We derive a general
constraint on XSlit cameras and propose a effective solution
for motion estimation.

In addition, our work is related to the other two major
components of SfM, i.e. the feature matching and bundle
adjustment. By far, most feature extractors, such as SIFT [10],
SURF [11], ORB [30], KAZE [31] and the recent DSP-
SIFT [32], [33] are designed for perspective images, i.e., to
address the translation, rotation and uniform scaling de-
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formations. They cannot handle unique distortions in XSlit
images. Affine covariant features, such as Harris and Hes-
sian Affine [34], and MSER [35], are helpful for addressing
this problem, but they normally generate a relatively small
number of correspondences. An exception is the Affine SIFT
(ASIFT) feature descriptor [36], which simulates the images
with different camera orientations from a frontal position.
ASIFT can generate a great many correspondences when
applied to XSlit images since the affine transformation can
approximate local XSlit distortions. However, there still exist
a large number of mismatches which make the RANSAC
unstable. Another way is to manually select and match
the feature points in two XSlit images [28]. Apparently,
manual selection is not an option for the SfM task because
a significant large number of feature correspondence are
required for reliable 3D reconstruction. Instead, we present
an accurate feature extraction and matching method for
large distortions of XSlit images by toning the SIFT feature
with non-uniform Gaussian kernels. When applying bundle
adjustment, an essential step of SfM, to general cameras,
researchers proposed several error metrics, including the
object space error [37], angular error [38] and shortest
transversal error [39]. In this paper, we introduce a novel
error metric based on the XSlit distortion and demonstrate
that it can improve the traditional re-projection error based
method.

3 XSLIT IMAGING MODEL

We model XSlit with ray space geometry. We first demon-
strate that similar to the perspective case, there exists a
fundamental matrix to correlate a pair of images taken by
XSlit cameras at different 3D locations. We then reduce the
dimensions in the fundamental matrix by imposing XSlit
geometric constraints and solve for the transformation via a
linear system.

3.1 XSlit Camera Geometry
We draw on the ray space geometry [40] to analyze XSlit
ray structures and further derive the epipolar geometry in
XSlit images. To represent a ray in ray space, we adopt the
Two-Plane Parametrization (2PP) [41] that is widely used in
previous works on light fields. With 2PP, a ray is represented
by its intersections with two parallel planes Πuv and Πst.
For simplicity, we use the image plane at z = 0 as Πuv and
the plane at z = 1 as Πst. Consequently, a rays direction can
be written as [σ, τ, 1] = [s− u, t− v, 1]. Then we have a 4D
parameter [u, v, σ, τ ] for each ray in space.

To construct an XSlit camera, we assume the image plane
(z = 0) is parallel to the two slits’ planes. As shown in Fig. 1,
the two slits are at depth z1 and z2 and form angle θ1 and
θ2 w.r.t the u-axis, where z2 > z1 and θ1 6= θ2. With this
configuration, a ray collected by the XSlit camera follows
the linear constraints:

σ = (Au+ Bv)/E τ = (Cu+ Dv)/E (1)

where
A = z2 cos θ2 sin θ1 − z1 cos θ1 sin θ2, B = (z1 − z2) cos θ1 cos θ2

C = (z1 − z2) sin θ1 sin θ2, D = z1 cos θ2 sin θ1 − z2 cos θ1 sin θ2

E = z1z2 sin(θ2 − θ1).
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Fig. 1. XSlit ray geometry. Top: Ray geometry of a single XSlit camera.
Bottom: XSlit images captured from different viewpoints are correlated
by a fundamental matrix F.

We call Eqn. 1 the XSlit constraints. Previous studies
reached similar conclusions in various forms [4], [27], [42].

3.2 XSlit Fundamental Matrix
Given a reference XSlit image X and a target XSlit image X′
captured at different viewpoints, our goal is to align X′ to X
via a rotation matrix R and a translation vector t. Consider
a 3D scene point P as shown in Fig. 1, we can ”project”
P to X and X′ by using corresponding rays r[u, v, σ, τ ] and
r′[u′, v′, σ′, τ ′] passing through the point. Assume that the
world coordinate is aligned with the reference image X, we
first transform r′ into the world coordinate r∗[u∗, v∗, σ∗, τ∗].
Since r and r∗ pass through P, their ray coordinates should

satisfy a bilinear constraint [6]:
u− u∗

v − v∗
=
σ − σ∗

τ − τ∗
. Its vector

form can be written as:

dT ·m∗ + mT · d∗ = 0 (2)

where d = [σ, τ, 1]T, m = [−v, u,χ]T, χ = vσ − uτ and
d∗ = [σ∗, τ∗, 1]T

∗
, m∗ = [−v∗, u∗,χ∗]T, χ∗ = v∗σ∗ − u∗τ∗.

Similarly, we define d′ and m′ for r′[u′, v′, σ′, τ ′]. Since
the two image coordinates in X and X′ are correlated by
transformation matrices R and t, we can derive the rela-
tionship between d′, m′ and d∗, m∗ as:

d∗ = R · d′ m∗ = R ·m′ − [t]×R · d′ (3)

Substituting Eqn. 3 into Eqn. 2, we have:[
dT mT

]
E6×6

[
d′

m′

]
= 0 (4)

This reveals that XSlit images captured by the same camera
but at different locations are correlated by a general

essential matrix as E6×6 =

[
−[t]×R R

R 0

]
.

Since both d and m are determined by the image pixel
coordinate [u, v], Eqn. 4 reveals that there exists an essential
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Fig. 2. The degenerated cases of the generalized epipolar constraint.
Top: the locally-central case, where for every 3D point the projection
center is fixed across views, and the axial case, where all image rays
must intersect a common line, identified by [25] and [26]. Bottom: The
XSlit degeneracy where corresponding rays across views must lie on a
doubly ruled surface.

matrix E6×6, similar to the one in the perspective case,
for two XSlit images captured at different viewpoints. Our
derivation so far is performed in the ray space and is
consistent with the GEC [3], which uses Plücker formulation
for more general cameras.

XSlit Degeneracy Analysis: Intuitively, we can solve for
the matrix as a linear system by treating Et = −[t]×R
and R as two independent unknowns and using 17 pairs
of correspondences to solve the following equations

dTEtd
′ + dTRm′ + mTRd′ = 0 (5)

In reality, the linear equations may exhibit degeneracies
due to the ray constraints imposed by a general camera
model. To demonstrate that XSlit is a degenerated case, we
will show that a linear family of solutions exist. Specif-
ically, we use vi to represent a point on the slit i and
wi to represent the slit direction. The moment of the ray
m = (vi + αiwi)× d, where αi is a scalar to make sure the
vi + αiwi is the intersection of the ray and the slit i. Eqn. 5
can be rewritten as:

dTEtd
′ + dTR

[
(vi + α′iwi)× d′

]
+
[
(vi + αiwi)× d

]T
Rd′ = 0

(6)

Further simplify the equation, we have:

dTEt+vi
d′ + α′id

TR(wi × d′) + αi(wi × d)TRd′ = 0 (7)

The general solution to Eqn. 7 is (λEt − µEvi
, λR +

µwiw
T
i ). Notice that there are two slits in a XSlit camera. If

(−Ev1
,w1w

T
1 ) and (−Ev2

,w2w
T
2 ) are independent, we can

recover the true solution (Et,R) unambiguously. However,
this is not true as we can set the coordinate system as
follows: let z axis intersect with both slits and x axis is
the half-vector of the two slits directions. In this coordinate
system, w1w

T
1 = w2w

T
2 and v1 ∝ v2. The previously iden-

tified general solution satisfy both equations determined
by the two slits. Hence the XSlit camera corresponds to

a degenerated case and the 17-pt algorithm won’t work.
Previous degeneracy analysis [25], [26] mainly focused on
the multi-camera rig and identified the locally-central case
as in Fig. 2(a) and the axial case as in Fig. 2(b). One crucial
requirement for Li et al.’s method [25] to be applicable is that
all the ambiguity lies in the determination of the R part and
the Et part of the solution is unchanged by the ambiguity.
Li et al.’s method handles the axial case by setting the origin
of the coordinate system on the axis which lead v = 0 in
previous general solution. Such trick can not be applied to
the XSlit camera and there is no easy solution to enforce the
ubiquity on Et, see Fig. 2.

To handle the XSlit degeneracy and further reduce the
dimension in E6×6, we exploit the XSlit constraints (Eqn. 1)
to decompose [d m]T into two matrices as:[

d
m

]
= KpT (8)

where

K =


0 −B A 0
0 −D C 0

I4×4


and p = [1,−v, u, χ]. Notice that K is only related to the
configuration of the two slits, so we call it XSlit intrinsic
matrix, where p is determined by pixel coordinate [u, v].
Substituting K, K ′ and p, p′ into Eqn. 4, we have:

pTFp′ = 0 where F = KTE6×6K
′ (9)

Recall that p is a 1 × 4 vector, our XSlit fundamental
matrix F is a 4×4 matrix with its last element being zero. As
a result, we should be able to solve the unknown elements
in F with 14 pairs of corresponding points between X and
X′ by applying Singular Value Decomposition (SVD).

3.3 Pose Estimation

Next, we use the fundamental matrix F to solve for cam-
era pose transformation matrices R and t. Notice that we
cannot achieve this directly from Eqn. 9 since the under-
determined XSlit intrinsic matrix K is uninvertible. To ad-
dress this problem, we apply QR matrix decomposition on
K and convert K into the multiplication of an orthogonal
matrix Q and an upper triangular matrix R, i.e., K = QR.
Decomposing K ′ similarly and substituting K, K ′ into
Eqn. 9, we have

F̂ = R−T4 FR′−1
4 =

(
QT

[
−[t]×R R

R 0

]
Q′
)

4

(10)

where the subscript 4 means 4×4 sub-matrix from the upper
left corner. Remove trivial zero elements in the equation, we
can rewrite Eqn. 10 as

F̂ =

[
M V
U 0

]
=

[
QT

1 QT
3

0 eT3

] [
−[t]×R R

R 0

] [
Q′1 0
Q′3 e3

]
(11)

where M is a 3 × 3 sub-matrix of F̂, U and V are 3 × 1
vectors, Q1, Q3 are 3× 3 sub-matrices of Q and Q′1, Q′3 are
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Fig. 3. An example of our feature matching technique. Left: We disturb the Guassian kernel in SIFT using affine deformation and apply them to
patches in XSlit image pairs. Middle: A better match can be find by non-uniform kernels. Right: Projected curves using the fundamental matrix
calculated from correspondences produced by our method.

3 × 3 sub-matrices of Q′, and e3 = [0, 0, 1]T. From Eqn. 11,
we can derive the following constraints on R and t:

U = eT3 ·RQ′1 (12a)

V = QT
1R · e3 (12b)

M = QT
1 (−[t]×R)Q′1 +QT

3RQ′1 +QT
1RQ′3 (12c)

From Eqn. 12a and Eqn. 12b, we have:

R · (Q′1−TUT) = e3 R · e3 = Q−T1 V (13)

Add another constraint according to the rotation matrix
properties.

R · [Q′1−TUT × e3] = e3 ×Q−T1 V (14)

where × means the cross product. From Eqn. 13 and 14,
we can find an initial estimation R and then get the optimal
solution by enforcing orthogonality using SVD. Then we can
solve the translation vector t from Eqn. 12c by plugging in
R.

3.4 Scale Ambiguity
Our formulation reveals why perspective SfM exhibits scale
ambiguity: recall that the perspective camera is a special
case of XSlit camera where the two slits are at the same
distance z1 = z2 = f , and f is the focal length. In Eqn. 1,
we have B = C = 0 and A = D. The ray constraints for a
perspective camera degenerate to σ = − 1

f u, τ = − 1
f v. As

a result, for a perspective camera, the higher order terms
χ = vσ − uτ = 0 and Eqn. 12a and Eqn. 12b become trivial,
and Eqn. 12c degenerates into M = QT

1 (−[t]×R)Q′1. This
reveals that we can only recover the direction of t but not
its actual scale.

From a geometric perspective, if we scale the entire scene
along with the camera positions by a factor k, the projections
of the scene points in the image will be exactly the same.
However, it will be very different for XSlit cameras: if we
scale both the scene and the camera positions, the absolute
distance between camera and the object will change, thus
leads to a different XSlit projection and yields a different
solution to Eqn. 12c. In other words, the scale ambiguity
is automatically resolved in XSlit SfM. However, this is
under the assumption that one can reliably establish feature
correspondences, which, however, is much more difficult in
the XSlit camera due to distortions.

4 XSLIT FEATURE MATCHING

Different from a perspective image, an XSlit image exhibits
various distortions, making it difficult to conduct correspon-
dence matching using conventional techniques.

4.1 Distortion Analysis
It is well known that perspective images exhibit wide-
angle and telephoto distortions. Distant objects may seem
abnormally large or small relative to objects closer to the
pinhole camera. But perspective images still preserve strong
geometric cues about the scene, e.g. lines are projected as
lines and frontal parallel objects keep their aspect ratios. Re-
searchers developed various techniques, such as orientation
estimation and searching in scale space, to well address the
case.

In contrast, the XSlit cameras exhibit caustic distor-
tions [43] in which straight lines in the scene appear curved
in the image. Furthermore, XSlit images exhibit different ex-
tension and compression rates along the two slits directions,
which makes the frontal parallel squares projecting into
rectangles. Such distortions nullify the feature extraction
and matching methods developed for perspective images.
We refer the readers to [44] on a comprehensive discussion
on XSlit image distortions and their causes.

Most feature extractors, such as SIFT [10], SURF [11],
ORB [30], KAZE [31] are designed for perspective images,
i.e., to address the translation, rotation and uniform scal-
ing deformations. Even with a small change in viewpoint,
the XSlit distortions may still lead to strong and apparent
deformations that we can not describe simply by similar
transformations.

An exception is the Affine SIFT (ASIFT) feature descrip-
tor [36], which simulates the images with different camera
orientations from a frontal position. The simulated images
are obtained by transforming the original image according
to longitude angle φ, latitude angle ψ and transition tilt t as
follows:

It = R(φ)T (t)R(φ) · Io (15)

where Io is the original image and It is the simulated image.
R(x) is the rotation matrix in 2D with angle x. T (t) is a
diagonal matrix with first eigenvalue t > 1 and the second
one equal to 1.
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ASIFT can generate a great many correspondences when
applied to XSlit images since the affine transformation can
approximate local XSlit distortions. However, there still exist
a large number of mismatches.

4.2 Matching with Non-Uniform Gaussian Kernels

To properly handle distortions in XSlit images, we develop
a new feature matching algorithm based on non-uniform
Gaussian kernels. Similar to ASIFT, we sample SIFT features
in different subspaces in order to undistort the XSlit image
patch. However, the difference is that we use non-uniform
Gaussian kernels to sample subspaces instead of perspective
warping used in ASIFT.

Specifically, an affine transformation can be defined by a
rotation angle θ, a shear factor s and a scale factor r:[

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1 sx
sy 1

] [
rx 0
0 ry

] [
x
y

]
(16)

We then apply affine transformation matrix (Eqn. 16) to a
Gaussian kernel to obtain non-uniform Gaussian kernels g
as

g(x, y, σ, θ, s, r) =
1

2πσ2
exp (−x

′2 + y′2

2σ2
) (17)

We use the non-uniform Gaussian kernels g to trans-
form the XSlit image patch I into feature subspaces. The
non-uniform Gaussian kernels are applied at both the key
point detection and the descriptor extraction stage. Per our
experience, apply the kernels for the key point detection
provides more candidates for the feature matching while
won’t affect the precision much. And we extract the feature
descriptor only on the patch covered by the non-uniform
kernel. The blocks for the histogram accumulation are de-
formed accordingly. Compared to uniform kernels, more
accurate matching can be found via. non-uniform patches
as shown in Fig. 3. In our feature subspace, we can com-
pensate various distortions properly. However, mismatched
correspondences can still occur occasionally. To address this
problem, we perform bi-directional search for valid corre-
spondences. In particular, we first make feature matching
from the reference image to the target image and then
reverse the search direction and match features from the
target to the reference. We only keep those correspondences
that exist in both rounds.

Fig. 3 illustrates our feature matching algorithm vs.
the state-of-the-arts. The left-top bar chart shows that our
algorithm outperforms other methods in terms of both
the number of detected feature points and the mismatch
rate. Although ASIFT detects more feature points than our
algorithm, its mismatch rate is extremely high. We also show
the “epipolar curves” produced by the fundamental matrix
calculated from our features and ASIFT features. Appar-
ently, our curves establish more accurate correspondences
and manage to achieve sub-pixel accuracy.

We first evaluate the non-uniform Gaussian based fea-
ture matching algorithm. We show that our feature detector
is able to handle drastic changes in viewpoint, which is
locally analogous to strong geometric distortions in XSlit
images. We test our algorithm with the Graffiti dataset [45]
which contains images captured with viewing angles rang-
ing from 20◦ to 60◦. Fig. 4(a) shows a subset of matched

0
20 30 40 50 60

View Angle

2k

4k

6k

8k

N
um

be
r o

f M
at

ch
es

SIFT
MSER
ASIFT

Harris
Hessian

Ours

SURF
ORB
KAZE

Correct Matches

Line Style Color
Total Matches

20 30 40 50 60
View Angle

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

SIFT
MSER
ASIFT

Harris
Hessian

Ours

SURF
ORB
KAZE

DSP-SIFT

DSP-SIFT

Fig. 4. Feature matching evaluation. Top: Subset of feature points gen-
erated by our algorithm. The overlaid parallelograms illustrate the affine
transformations used to produce features; Bottom-left: Precision curves
in comparison with state-of-the-arts; Bottom-right: Numbers of valid
features (correctly matched) and all matched features w.r.t. different
viewing angles.

Matches RANSAC
Total Correct Iter Time(s)

SIFT 201 125 1.8e4 9.34
MSER 16 7 - -
ASIFT 900 354 1.4e4 26.18
DSP-SIFT 140 65 7.2e5 284.22
Harris 249 129 2258 1.38
Hessian 294 156 1913 3.38
SURF 30 4 - -
ORB 40 18 675 0.20
KAZE 98 54 531 0.21
Ours 540 469 184 0.27

TABLE 1
Comparisons of our feature matching technique vs. the state-of-the-art

methods on XSlit image pair.

feature points produced by our algorithm. The viewing
angle difference between the two images is 60◦. The overlaid
parallelograms illustrate the affine transformations used
to generate feature points. This example shows that our
algorithm is able to handle images with big changes in
viewpoint.

To quantitatively evaluate the performance, we make a
precision curve, showing the ratio between the number of
valid features and all matched features. Specifically, we com-
pare our method with the state-of-the-art feature detectors,
such as SIFT,DSP-SIFT, SURF, ORB, KAZE, Harris, Hessian,
MSER and ASIFT. Valid feature points are defined as a
pair of corresponding points within 1.5 pixels after being
warped by the estimated homography. In Fig. 4, the bottom-
left image shows the precision curve w.r.t the change in
viewing angle and the right one shows the number of valid
features and all matched features. Although the precision
curves of all other feature detectors descend rapidly when
the viewing angle variation increases, the ratio remains high
in our method. This is because the non-uniform Gaussian
kernels adopted in our approach are effective in handling
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large distortions. Although in some cases the ASIFT detects
more feature points in total, its mismatch rate is very high.
To further show the effectiveness of our feature matching
method on XSlit images, we compare on the XSlit image pair
shown in Fig. 3. The match result is shown in Tab. 1 and our
method reports the highest number of correct matches as
well as the precision. The precision of the matched features
is important for XSlit images as the RANSAC framework
choose matches randomly for pose estimation. We require 14
correspondences for pose estimation which is much larger
than 5 or 8 pairs in perspective cameras. With 50% correct
matches, the chance is 6E-5 that all 14 matches are inliers.
We compare the performance of RANSAC in Tab. 1 that
our method is significant faster while reporting sufficient
number of matches.

5 SCENE RECONSTRUCTION

After extracting correspondences and estimating camera
poses, we set out to recover 3D scene geometry (i.e., 3D
point cloud) by triangulating camera projection rays.

5.1 Points Triangulation

Consider a 3D point P[x, y, z] in a camera view with world
to camera transformation matrix R and vector t. Assume
P is projected by ray r[u, v, σ, τ ] onto the image plane. The
point projection in XSlit can be formulated asxy

z

+ λ ·R−1

στ
1

 = R−1 · (

uv
0

− t) (18)

where λ is the ray propagation factor.
Our goal is to calculate the 3D coordinate (x, y, z) of the

scene point P. We treat λ as an independent variable, then
Eqn. 18 becomes a linear constraint. Given N views, we can
formulate three equations for each viewpoint using Eqn. 18.
With 3N equations in total, we stack these equations into a
linear system and solve the N + 3 unknowns (x, y, z and N
λ values) by applying SVD.

5.2 Bundle Adjustment

Recall that in perspective camera based SfM, bundle adjust-
ment aims to refine both camera poses and scene geometries
as follows:

Ep =
m∑
i

n∑
j

wji

∥∥∥Φp[Kp, Tp
(
Pj , 〈Ri, ti〉

)]
− xij

∥∥∥2

(19)

where wji is a binary variable indicating the visibility of the
jth 3D point in camera i (1 means visible).Kp is the intrinsic
matrix of the perspective camera; Tp transforms the 3D point
Pj into the camera coordinate using Ri, ti; and Φp is the
perspective projection function defined as:

Φp
[
Kp, Tp

(
P, 〈R, t〉

)]
= Kp(RP + t) (20)

Bundle adjustment for SfM with a perspective camera
utilizes the 2D coordinates re-projection errors of detected

feature points as the metric to do the final refinement. Sim-
ilar to the perspective case, we can write the re-projection
error for XSlit camera as:

Ed =
m∑
i

n∑
j

wji

∥∥∥Φ[K, T (Pj , 〈Ri, ti〉
)]
− xij

∥∥∥2

(21)

where K is the intrinsic matrix of XSlit; T transforms the 3D
point Pj into the camera coordinate like Tp in Eq. 19 ; and
Φ is the XSlit projection function defined as:

Φ(K,P) = E ·
[
E + Az Bz
Cz E + Dz

]−1 [
x
y

]
(22)

One problem of standard BA is it suffers from drift
along optical axis which is manifested in continuous stretch-
ing of the estimated trajectory compared to ground truth.
While position estimation perpendicular to motion heading
is more accurate than along the optical axis [46]. The
rooted cause is that the re-projection error of standard BA is
insensitive to deviations along the projection ray as all 3D
points on the ray will project to the same pixel.

In the XSlit case, we exploit a unique type of distortion,
i.e., aspect ratio distortion, to improve the repojection error
based bundle adjustment. In perspective cameras, images
of a frontal-parallel 3D object keep the aspect ratio (AR)
invariant to the depth. In contrast, the aspect ratio of an
object changes with its depth in an XSlit camera. This
depth dependent aspect ratio (DDAR) property provides
additional cues to diversify the optimization objective along
the projection ray direction which can help to improve the
result of bundle adjustment.

5.2.1 Depth Dependent Aspect Ratio Analysis
To analyze the aspect ratio distortion of a XSlit camera,
we first discuss its projection model analogous to pinhole
projection. When we map a 3D point P[x, y, z] to image
pixel p(u, v) via a XSlit camera, we can describe it as
follows: firstly, we decompose the x-y components of P into
three basis vectors, v1[cos θ1, sin θ1, 0], v2[cos θ2, sin θ2, 0],
e3[0, 0, 1] and represent it as [κx, κy, z]. Then we project
the [κx, κy] components to [κu, κv]. Each component can be
viewed as pinhole projection since they are parallel to the
slits. Finally, we obtain the mapping from P to p.

P = κxv1 + κyv2 + ze3

We then project κxv1 and κyv2 independently. Notice
that the two components are at depth z. And κxv1 is parallel
to slit 1 and κyv2 to slit 2. Their projections emulate the
pinhole projection except that the focal lengths are different:

κu = − z2

z − z2
κx κv = − z1

z − z1
κy (23)

Since the XSlit mapping is linear, we can combine κu and
κu to compute p.

p = κuv1 + κvv2 (24)

where κu and κv are the linear representations of p on the
basis of v1 and v2.

Equation 23 reveals that κx and κy are projected to κu
and κv with different scales on the two directions parallel
to the slits. In other words, with the change of depth, the
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Fig. 5. XSlit camera exhibits depth dependent aspect ratio and depth dependent line slopes.

ratio will change accordingly. Specifically, we can calculate
the ratio as:

κu
κv

=
z2(z − z1)

z1(z − z2)

κx
κy

(25)

This is fundamentally different from the pin-
hole/perspective case where the ratio remains static
across depth. Recall that the pinhole camera can be viewed
as a special XSlit camera where the two slits intersect, i.e.,
they are at the same depth z1 = z2. In that case, Eqn. 25
degenerates to κx

κy
= κu

κv
, i.e., the aspect ratio is invariant to

depth.
We use ro = κx

κy
to represent the base aspect ratio, and

ri = κu

κv
the aspect ratio after XSlit projection. From Eqn. 25,

we can derive:

z1(z − z2)ri − z2(z − z1)ro = 0 (26)

Furthermore, we can consider a line frontal-parallel to
the XSlit camera as the diagonal of a parallelogram, whose
sides are along the directions of the two slits. Given a
line with slope s and a point P1[x1, y1, z] on it, we have
P2[x1 + 1, y1 + s, z] on the line. We can map it to a line with
slope s′ on XSlit image, where P1 and P2 map to points
p1(u1, v1) and p2(u1 + c, v1 + cs′) respectively. According to
the definition of ro, we can decompose the segment P1-P2

to the direction of the two slits and take the ratio of the two
components to get ro:

ro =
sin θ2 − s sin θ2

s cos θ1 − cos θ2
(27)

ri is also calculated from Eqn. 27 by simply substituting s
with s′. Eqn. 27 and 26 reveal that the slopes of a frontal-
parallel line and its projection should satisfy certain criteria,
see Fig. 5. Such inference cannot work in the pinhole camera
since the slope of the frontal-parallel line is always the same
as observed slope.

5.2.2 Depth Dependent Slope Error
Our aspect ratio analysis leads to a new type of error metric.
Specifically, we integrate the depth-dependent slope (DDS)
as an additional constraint. DDS indicates that the slope of
a frontal-parallel line segment in an XSlit image changes
according to its depth to the camera.

For each pair of XSlit views Xi and Xj with rotation Rij

and translation tij as relative pose from view j to view i.
The 3D Point Pk projects to pixel xik in Xi, and pixel xjk
in Xj . Instead of thinking camera is moving and the scene

P
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（a）Traditional Reproject Error Based Bundle Adjustment

（b）Combine Reproject Error With DDS for Bundle Adjustment

Fig. 6. Two error metrics for XSlit bundle adjustment. (a) left: Re-
projection error Ed: distance between the projected and observed
points; (b) left: Depth-dependent slope (DDS) error Er : difference be-
tween the projected and observed slopes; Right: Bundle adjustment
(BA) comparison without (a) and with DDS (b) error metric.

is static, alternatively we assume that the camera is static
and the scene moves reversely (e.g. Pk moves reversely to
P′k = RT

ijPk − RT
ijtij). Notice this imitation is valid as

the generated images under both views Xi and Xj remain
unchanged. Under our assumption, the 3D point Pk moves
to P′k while its projection moves from pixel xjk to xik. We
denote the slope of line segment connecting xik and xjk
as sα. According to Eqn. 27, we can get the observed aspect
ratio after projection as: rα = (sin θ2−sα sin θ1)/(sα cos θ1−
cos θ2).

Per our discussion in Sec. 5.2.1, the aspect ratio before
projection only applies to frontal-parallel line segments. We
consider the frontal-parallel line segment ` passing through
Pk and intersecting with the projection ray of P′k, as shown
in Fig. 6(b). Since ` is frontal-parallel, we can easily calculate
its slope sβ by tracking P′k along its projection ray to Pk’s
depth zk. Similarly, we can also calculate the aspect ratio
rβ before projection. We align the world coordinate system
with the first XSlit camera view i = 0 and combine all errors
from view j to the first view as our final DDS error. Hence
the error metric based on DDS is as follows:

Er =
N∑
j

K∑
k

(vji ‖z1(zk − z2)rα − z2(zk − z1)rβ‖2)i=0 (28)
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We combine the re-projection error and the DDS error
as our final objective function for optimizing the viewpoint
transformation matrices R , t and the 3D point coordinate
P.

P,R, t← arg min
P,R,t

(Ed + λEr) (29)

Optimization: It’s a non-linear least squares problem and
we use the Levenberg-Marquardt (LM) algorithm to solve
for the optimal camera pose and structure. To accommodate
the LM algorithm, we represent the camera pose as a 6
dimensional vector ξ = (ω, t), where ω is the axis/angle
representation of the rotation matrix. We use subscript c
to represent the point is in the camera coordinate, i.e.
Pc = T (P, ξ). The Jacobi matrices of the re-projection error
residuals in Eqn. 29 can be computed using the chain rule:

∂Φ

∂P
=

∂Φ

∂Pc

∂T
∂P

∂Φ

∂ξ
=

∂Φ

∂Pc

∂T
∂ξ

(30)

where ∂Φ
∂Pc

can be easily calculated from Eqn. 22. ∂T∂P and ∂T
∂ξ

are the derivatives of the transformation function, which are
the same with the traditional SfM method.

To simplify the derivation of the Jacobi matrix of the
DDS error, we set zk = 0 in our implementation. Thus the
residual function in Eqn. 28 becomes the direct difference
between rα and rβ . And sβ becomes the slope of the line
segment connecting the projections of P and P′ on the
image plane, i.e.

sβ =
qx − q′x
qy − q′y

q = Φ(P) q′ = Φ(P′) (31)

The computation of the Jacobi matrix depends only on rβ as

∂rβ
∂P

=
∂rβ
∂sβ

(
∂sβ
∂q

∂Φ

∂Pc

∂T
∂P

+
∂sβ
∂q′

∂Φ

∂P′c

∂T −1

∂P
)

∂rβ
∂ξ

=
∂rβ
∂sβ

∂sβ
∂q′

∂Φ

∂P′c

∂T −1

∂ξ

(32)

T −1 is the reverse coordinate transformation according to
ξ. From Eqn. 30 and 32 we can compute the Jacobi matrix
J for the problem defined in Eqn. 29. For the state vector
x = {ξ,P} which contains all camera poses and 3D point
positions, we have its LM step prediction equations as:

(JTJ + λS)δx = −JT r(x) (33)

where r(x) is the residuals for the non-linear least squares
problem in Eqn. 29. S is the diagonal of J . From the feature
correspondences and sequentially estimated pose of XSlit
cameras, we can do triangulation and obtain the initial state
vector x0. The state vector can be updated in each iteration
as xi+1 = xi + λδxi till we find the optimal solution for
both camera poses and feature point positions.

In Fig. 6, we show illustrations of our two error metrics
and the BA results. We observe that our DDS error metric
effectively improves the reconstruction accuracy.

6 EXPERIMENTAL VALIDATIONS

In this section, we perform experiments using both synthetic
and real data to evaluate our XSlit SfM framework.

6.1 Camera Pose Estimation

We first evaluate our pose estimation algorithm through
simulation. In our experiment, we set up the XSlit camera as
z1 = 1, z2 = 2 and θ1 = 0, θ2 = 90◦. We render images at a
resolution of 800 × 600. The camera is moved by a rotation
matrix with Euler angles [30◦, 30◦,−30◦] and translation
vector [2, 3, 0].

First, to support our XSlit degeneracy analysis in Sec. 3.2
and demonstrate that Li et al.’s method [25] can not handle
the XSlit camera, we randomly generate 100 3D points and
project those points onto the XSlit camera. We then add
Gaussian noise with standard deviation = 1 to the projected
pixels. We feed these noisy data to our algorithm and Li’s
method [25]. We use the angular difference between two
rotation matrices as the rotation error. Given two rotation
matrices R1 and R2, their angular difference is calculated
as follows:

Da = cos−1[(tr(R1 ∗R2
T)− 1)/2] (34)

The translation error is directly measured by the Eu-
clidean distance between the two translation vectors. We
simulate 1000 random tests. Fig. 7 shows the histogram of
the rotation errors and translation errors of our algorithm
and [25]. Li et al.’s method [25] shows huge errors in
both rotation and translation suggests it can not handle the
ambiguities in XSlit cameras. The reason is that [25] requires
the ambiguities lie only in the determination of the rotation
matrix part which is not the case for the XSlit camera as
analyzed in Sec. 3.2. In contrast, our method exhibit accurate
estimated poses suggesting the degeneracy is well handled.

We then evaluate the robustness of our algorithm w.r.t
the noise ratio and the point-to-camera distance. The point-
to-camera distance is measured by the depth sensitivity of
the XSlit camera rz = z2(z2 − z1)/z1, where z1 and z2 are
the distances of the two slits. The results are shown in Fig. 8,
which demonstrates that our algorithm can keep errors at a
low level despite the growth of noise level.

To conduct more comprehensive comparisons, we fur-
ther compare our pose estimation method with the im-
plementations of Stewénius’s six-point algorithm [47], Li
et al.’s method [25], non-linear optimization method and
the GE [48] method provided by the OpenGV library [49].
Our proposed method, Li et al.’s method and the non-
linear optimization method directly produce the optimal
estimation. In comparison, the six-point algorithm produces
64 solutions which include the optimal one produced by
ours. To remove the ambiguities, one needs to integrate six-
points algorithm into a RANSAC framework. Hence we first
compare our method with Li et al.’s method and non-linear
optimization method w.r.t noise. We then add outliers to the
simulation data and test the methods under the RANSAC
framework.

We add Gaussian noise to the projected pixels and use
the noisy data as inputs to different methods. For each noise
level, we simulate 500 tests and take the mean value as the
final error. We make the error curve w.r.t noise level. During
our experiment, we find the Li et al.’s method doesn’t work
for the XSlit camera since there is additional ambiguity in
XSlit cameras. And we notice that the non-linear optimiza-
tion method is very sensitive to the initial pose as shown
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Fig. 7. Comparison with Li et al.’s method [25] under 1000 random tests
with Gaussian noise. The figure shows the histogram of translation error
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method [25] and bottom row is ours.
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Fig. 8. The robustness of our algorithm w.r.t the noise ratio and the point-
to-camera distance.

Error curve w.r.t to noise, no initial pose provided for 

the Li et.al.’s method and non-linear optimization methods

Error Curve w.r.t to noise level, randomly disturb the ground truth pose by 0.1 and then use 

it as the prior for  Li et.al.’s method and non-linear optimization methods during each test

Fig. 9. Error curve of Li et al.’s method, non-linear optimization method
and our method w.r.t to noise. Li et al.’s method does not work as it only
handles ambiguities in axial and central cameras. Without reliable prior,
non-linear optimization method can not produce accurate estimation.

Fig. 10. Error curve w.r.t the accuracy of initial pose.

Fig. 11. Error curve of the 6-point algorithm, Li et al.’s method, GE
method and our method w.r.t to noise in RANSAC framework. 0.15
fraction of original data size outliers are added.

in Fig 9. Without the initial pose (Fig 9 top), the non-linear
optimization method generally produces very large errors.

To further analyze how priors can affect the performance
of non-linear optimization methods, we fix the noise level
to 1. Then we randomly disturb the ground truth pose
according to a scale and use the disturbed pose as priors
for non-linear optimization methods. We simulate 100 tests
and take the mean value as the final error. We make the error
curve w.r.t prior disturbance as shown in Fig. 10. As we can
see, for accurate estimation, the initial pose should be fairly
close to the ground truth ( with only 0.15 disturbance ). Not
relying on the initial pose, our method can generate highly
accurate estimations.

Next, we add outliers to synthetic data and compare our
method with Stewénius’s six-point algorithm [47], the Li et
al.’s method and GE algorithm. We first add 0.15 fraction
of the original data size outliers, and test the robustness
of the methods w.r.t noise, as shown in Fig 11. Having
found that the 6-point algorithm yields extreme large errors
occasionally, we use the median error for better comparison.
We observe that all other methods fail while ours succeed.
We believe that the GE method fails for lack of reliable
priors. In terms of the 6-point algorithm, we find that
even without any noise and outliers, its implementation in
OpenGV still generates large errors occasionally. We think
this is because the 6-point algorithm generate 64 solutions
per 6 correspondence, making the RANSAC framework
more complicated, so that it is difficult to remove those
ambiguities reliably. In our comparison, we use the one with
the smallest error with the ground truth among all returned
solutions of the 6-point algorithm (which is the most ”nice”
to algorithms returning multiple solutions).

We evaluate how the fraction of the outliers affects the
performance. We fix the noise level to 1 and gradually add
more outliers to synthetic data. For each fraction of outlier,
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Fig. 12. Error curve of the 6-point algorithm, Li et al.’s method, GE
method and our method w.r.t to outlier fraction in RANSAC framework.
Gaussian noise with std 1 is added into the data.

we simulate 50 tests. The curve is shown in Fig 12.
According to the above experiments, our method is more

robust and reliable than others for pose estimation of an
XSlit camera.

6.2 Point Cloud Reconstruction
Synthetic Data: We use ray tracing to render synthetic XSlit
images. Specifically, we implement an XSlit camera model
in the open source ray tracer POV-Ray [50].

We first test on a simple ladybug scene which contains
very few feature points. We use an XSlit camera with z1 = 1
and z2 = 3 to capture the ladybug image. The size of the
ladybug is 9 × 5 × 5. We place the XSlit camera about
15 units away from the ladybug and rotate around it. We
render an image in every 10◦ with 6 images in total. The
image resolution is 800 × 600. We follow the incremental
SfM pipeline. We first perform feature matching and pose
estimation on cameras 1 and 2, and triangulate rays from
the matched feature points. We then do the same on cameras
2, 3, and so on until all cameras are involved.With the
pose estimation and triangulation of all the five camera
pairs, we merge and transform all recovered point clouds
into the camera 1’s coordinates. Finally, we run our bundle
adjustment algorithm to refine both camera poses and point
clouds. Our results (both point clouds and camera poses) are
shown in Fig. 13 (top row). We superimpose the recovered
point clouds onto the ground truth mesh. Although our
point clouds are sparse due to the limitation of available
feature points, the recovered points fit well on the ground
truth and the 3D points are recovered with absolute scales.

We then test on a more complex water pot scene. With a
size of 20 × 10 × 20, the water pot has a high resolution
texture with fine details that can provide more feature
points. We use an XSlit camera with z1 = 3 and z2 = 9.
We place the XSlit camera about 35 units away from the
pot and rotate it around the object. We render 8 images in
total with 15◦ steps. The image resolution is 800× 600. Our
reconstruction process is the same as that in the ladybug
scene. The results are shown in Fig. 13 (bottom row). We
recover denser point clouds this time and the reconstruction
also fits the ground truth well.

Real Data: To capture real data, we construct a real XSlit
lens using two cylindrical lenses [8]. The two cylindrical
lenses have focal lengths of 25mm (closer to the sensor)
and 75mm (farther away from the sensor) respectively. The
principal axises of the two lenses are orthogonal and we
use two 1mm wide slit apertures to form sharp images. The
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Fig. 13. Results on two synthetic data. Top row shows the ladybug scene
and bottom row shows the water pot scene. For each scene, we show
two sample XSlit images, recovered point clouds, estimated camera
positions (blue), ground truth camera positions (red), and our point cloud
superimposed on the ground truth mesh.

distance between the two lenses is adjustable, ranging from
5cm to 12cm. Our camera setup is shown in Fig. 14.

We first test our method on a simple checker scene (as
shown in Fig. 15). We take a cube as our reconstruction
target and put checkerboards on its surface to provide fea-
ture points. In this experiment, we manually extract checker
corners and use them to estimate camera poses. We use
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Cylindrical lenses Sensor

Fig. 14. Left: Our experimental setup; Right: Our real XSlit camera
construction.

mmExample of detected corners

Fig. 15. Results of the checker cube scene. Left: Our recovered camera
poses and 3D points; Right: Histogram of distance errors.

triangulation to recover the 3D points. The estimated camera
poses and 3D points are shown in Fig 15(left). We use the
distance errors between neighboring corners to evaluate
our reconstruction since the checker corners are uniformly-
spaced by 5mm. Fig 15(right) shows the histogram of the
distance errors.

We then construct another scene by placing two toys
on a printed coordinate grid, as shown in Fig. 16(a). We
perform our feature matching algorithm on captured XSlit
images. Fig. 16(b) shows the feature matching results for
one XSlit image pair. We then estimate camera poses and
triangulate the 3D point clouds as shown in Fig. 17. In
addition, we take 12 images using a perspective camera and
compute a surface mesh using a SfM software AgiSoft [51].
We treat the mesh as ground truth and resolve the scale
ambiguity in the perspective case using the coordinate grid.
We align the two reconstructions and superimpose our point
cloud on the ground truth mesh. As shown in Fig. 16(c),
the two reconstructions are consistent and our XSlit SfM
estimates the 3D point clouds with absolute scale. We show
the estimated camera poses in Fig. 17 and Tab. 2. To further
demonstrate the accuracy of our reconstruction, we show
the bad points with error defined as the nearest distance
between the reconstructed point and the mesh. The per-
centages of the bad points with 0.10cm, 0.15cm and 0.30cm

View Rotation (Eular Angles in degrees) Traslation (cm)
0 [0◦, 0◦, 0◦] [0, 0, 0]
1 [0.10◦, −4.94◦, 0.09◦] [2.17, 0.04, -0.62]
2 [0.21◦, −9.67◦, 0.12◦] [3.87, 0.07, -0.36]
3 [−0.29◦, −16.32◦, 0.70◦] [6.58, 0.23, 0.05]
4 [−0.64◦, −22.28◦, 0.99◦] [8.88, 0.28, -0.141]

TABLE 2
Recovered XSlit camera poses shown in Fig. 17.

Error Total <0.1cm <0.15cm <0.3cm
Percentage of Points 1368 48.0% 71.7% 96.5%

TABLE 3
Percentage of the correct points in the reconstructed point cloud.

(a)

(c)(b)
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Fig. 16. Results of the toy scene. (a) Scene setup; (b) Matched feature
points; (c) Recovered point cloud superimposed on the ground truth
mesh.
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Fig. 17. Estimated camera poses for the house toy scene.

threshold respectively are shown in Tab. 3. Half of points is
within 0.10cm distance with the mesh and almost all points
are within the 0.30cm range. We overlay the bad points on
the scene depth map and show it in Fig. 17. Consider the
low quality of the real XSlit images, our method can recover
the scene accurately.

7 CONCLUSION AND DISCUSSIONS

We have presented a novel SfM framework based on a spe-
cial type of multi-perspective camera called the XSlit. Our
XSlit SfM directly eliminates the scale ambiguity observed
in the perspective camera. We have shown that similar to
the pinhole camera, the fundamental matrix can also be
used for correlating a pair of XSlit images. We have further
developed techniques to reduce the degree of freedom of
the fundamental matrix for more reliable pose estimation. To
use the XSlit for SfM, we have tailored techniques for feature
matching, triangulation, and bundle adjustment techniques,
by actively exploiting unique aspect ratio distortion prop-
erties in the XSlit images. Despite being largely theoretical,
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we have validated our formulation and solutions through
synthetic and real experiments.

To our knowledge, this is the first XSlit SfM frame-
work. As discussed earlier, the XSlit is one of the most
fundamental multi-perspective cameras where the pinhole,
orthographic and pushbroom cameras are all its special
cases. A very important future direction is to develop a
unified solution for all four types of cameras where one can
easily adjust individual components (e.g., feature matching,
bundle adjustment etc) to accommodate special imaging
properties of corresponding cameras. Our current work is
still largely theoretical as high quality XSlit cameras are not
yet accessible. In our implementation of the XSlit, we relay
two cylindrical lenses coupled with slit-shaped aperture.
Although effective, such an XSlit implementation has a
relatively small baseline (i.e., the distance between the two
slits) and therefore it can only acquire aspect ratio changes
within a short range. Constructing a large baseline XSlit
camera will be costly as it is difficult to fabricate large
form cylindrical lens. A more feasible solution would be
adopt a cylindrical catadioptric mirror where the reflection
image can be approximated as an XSlit image, which is our
immediate future work.

Finally, we plan to investigate integrating perspective
and XSlit cameras into a single hybrid imaging system. For
example, by constructing a hybrid XSlit-perspective camera
pair, we may employ advantages for both cameras, e.g, one
for reliable point cloud reconstruction and the other for
solving scale ambiguity. Finally, a special type of pushbroom
or XSlit images are panoramas synthesized from videos
captured under translational camera movements. These im-
ages have become widely popular in VR content production
and are can be easily accessed in large volumes. We hence
seek to adopt SfM in-the-wide approach (e.g., using internet
images [52]) and test our framework on internet panorama
images.

REFERENCES

[1] S. M. Seitz and J. Kim, “The space of all stereo images,” Interna-
tional Journal of Computer Vision, vol. 48, no. 1, pp. 21–38, 2002.

[2] T. Pajdla, “Stereo with oblique cameras,” International Journal of
Computer Vision, vol. 47, no. 1-3, pp. 161–170, 2002.

[3] R. Pless, “Using many cameras as one,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2003, pp. II–587.

[4] J. Yu and L. McMillan, “General linear cameras,” in European
Conference on Computer Vision, 2004, pp. 14–27.

[5] M. Trager, B. Sturmfels, J. Canny, M. Hebert, and J. Ponce, “General
models for rational cameras and the case of two-slit projections,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1935–1943.

[6] J. Yu and L. McMillan, “Modelling reflections via multiperspec-
tive imaging,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, 2005, pp. 117–124.

[7] Y. Ji, J. Ye, and J. Yu, “Depth reconstruction from the defocus effect
of an xslit camera,” in Computational Optical Sensing and Imaging.
Optical Society of America, 2015, pp. CM4E–3.

[8] J. Ye, Y. Ji, and J. Yu, “A rotational stereo model based on xslit
imaging,” in IEEE International Conference on Computer Vision, 2013,
pp. 489–496.

[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[10] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[11] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up robust
features,” in European Conference on Computer Vision, 2006, pp. 404–
417.

[12] R. Szeliski and S. B. Kang, “Shape ambiguities in structure from
motion,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 19, no. 5, pp. 506–512, 1997.

[13] H. C. Longuet-Higgins, “A computer algorithm for reconstructing
a scene from two projections,” Nature, vol. 293, no. 5828, p. 133,
1981.

[14] W. Yang, H. Lin, S. Bing Kang, and J. Yu, “Resolving scale ambigu-
ity via xslit aspect ratio analysis,” in IEEE International Conference
on Computer Vision, 2015, pp. 3424–3432.

[15] A. J. Davison, “Real-time simultaneous localisation and mapping
with a single camera.” in IEEE International Conference on Computer
Vision, vol. 3, 2003, pp. 1403–1410.

[16] H. P. Moravec, “Obstacle avoidance and navigation in the real
world by a seeing robot rover.” DTIC Document, Tech. Rep., 1980.

[17] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M.
Seitz, and R. Szeliski, “Building rome in a day,” Communications of
the ACM, vol. 54, no. 10, pp. 105–112, 2011.

[18] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring
photo collections in 3D,” in ACM Transactions on Graphics, vol. 25,
no. 3, 2006, pp. 835–846.

[19] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge University Press, 2003.

[20] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for
ground vehicle applications,” Journal of Field Robotics, vol. 23, no. 1,
pp. 3–20, 2006.

[21] B. Clipp, J.-H. Kim, J.-M. Frahm, M. Pollefeys, and R. Hartley, “Ro-
bust 6DoF motion estimation for non-overlapping, multi-camera
systems,” in IEEE Workshop on Applications of Computer Vision, 2008,
pp. 1–8.

[22] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart,
“Absolute scale in structure from motion from a single vehicle
mounted camera by exploiting nonholonomic constraints,” in
IEEE International Conference on Computer Vision, 2009, pp. 1413–
1419.

[23] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S.-J. Kim, P. Merrell et al., “Detailed
real-time urban 3D reconstruction from video,” International Jour-
nal of Computer Vision, vol. 78, no. 2-3, pp. 143–167, 2008.

[24] D. Nistér and H. Stewénius, “A minimal solution to the gener-
alised 3-point pose problem,” Journal of Mathematical Imaging and
Vision, vol. 27, no. 1, pp. 67–79, 2007.

[25] H. Li, R. Hartley, and J.-h. Kim, “A linear approach to motion
estimation using generalized camera models,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[26] J.-S. Kim and T. Kanade, “Degeneracy of the linear seventeen-point
algorithm for generalized essential matrix,” Journal of Mathematical
Imaging and Vision, vol. 37, no. 1, pp. 40–48, 2010.

[27] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall, “Mosaicing new
views: The crossed-slits projection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 6, pp. 741–754, 2003.

[28] D. Feldman, T. Pajdla, and D. Weinshall, “On the epipolar geome-
try of the crossedslits projection,” IEEE International Conference on
Computer Vision, pp. 988–995, 2003.

[29] P. Sturm, “Multi-view geometry for general camera models,” in
IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,
2005, pp. 206–212.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in IEEE International Conference
on Computer Vision, 2011, pp. 2564–2571.

[31] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,”
in European Conference on Computer Vision. Springer, 2012, pp.
214–227.

[32] J. Dong and S. Soatto, “Domain-size pooling in local descriptors:
Dsp-sift,” in IEEE conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 5097–5106.

[33] J. L. Schonberger, H. Hardmeier, T. Sattler, and M. Pollefeys,
“Comparative evaluation of hand-crafted and learned local fea-
tures,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017, pp. 1482–1491.

[34] K. Mikolajczyk and C. Schmid, “An affine invariant interest point
detector,” in European Conference on Computer Vision, 2002, pp. 128–
142.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 09,2020 at 16:21:43 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2957119, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[35] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image and Vision
Computing, vol. 22, no. 10, pp. 761–767, 2004.

[36] J.-M. Morel and G. Yu, “ASIFT: A new framework for fully affine
invariant image comparison,” SIAM journal on imaging sciences,
vol. 2, no. 2, pp. 438–469, 2009.

[37] G. Schweighofer and A. Pinz, “Fast and globally convergent
structure and motion estimation for general camera models.” in
British Machine Vision Conference, 2006, pp. 147–156.

[38] M. Lhuillier, “Effective and generic structure from motion using
angular error,” in International Conference on Pattern Recognition,
2006, p. 0.
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